• Title/Summary/Keyword: Power Consumption Model

Search Result 634, Processing Time 0.031 seconds

Robust Signal Transition Density Estimation by Considering Reconvergent Path (재수렴성 경로를 고려한 견실한 신호 전이 밀도 예측)

  • Kim, Dong-Ho;U, Jong-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A robust signal transition density propagation method for a zero delay model is presented to obtain the signal transition density for estimating the power consumption. The power estimation for the zero delay model is a proper criteria for the lower boundary of power consumption. Since the input characteristics are generally unknown at design stage, robust estimation for wide range input characteristics is very important for the power consumption. In this paper, a conventional transition estimation method will be explored. And this exploration will be analyzed with the input/output signal transition behavior and used to propose the robust signal transition density propagation for the power estimation. In order to apply to practical circuits, the reconvergent path, which is crucial to affect the exactness of the power estimation, will be studied and an algorithm to take the reconvergent path into consideration will be presented. In experiment, the proposed methodology shows better robustness, comparable accuracy and elapsed time compared to the conventional methods.

Development of Energy-sensitive Cluster Formation and Cluster Head Selection Technique for Large and Randomly Deployed WSNs

  • Sagun Subedi;Sang Il Lee
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.

Development of Load Modeling of Locomotive using Velocity and Consumed Power (속도와 소비전력을 이용한 전기차의 부하모델 개발)

  • Kim Joorak;Jang Donguk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1352-1354
    • /
    • 2004
  • The accurate analysis on railway traction power system should be carried out a load forecast preferentially. Commonly, it has been performed through Train Performance Simulator (TPS). In the study focused on velocity or location of train, however, the electric power consumption have been computed by converting mechanical power according to given velocity. Therefore, this paper presents a development of a mathematical model for electric load. The proposed load model is expressed as polynomial to reflect the influence of variance of train speed, that is, the model expresses the power as a function of train speed. in this study, method of the least squares method is used to find each coefficient and field test is performed to acquire data, electric power and speed of train in commercial running line.

  • PDF

Energy-Aware Preferential Attachment Model for Wireless Sensor Networks with Improved Survivability

  • Ma, Rufei;Liu, Erwu;Wang, Rui;Zhang, Zhengqing;Li, Kezhi;Liu, Chi;Wang, Ping;Zhou, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3066-3079
    • /
    • 2016
  • Recent years have witnessed a dramatic increase in topology research of wireless sensor networks (WSNs) where both energy consumption and survivability need careful consideration. To balance energy consumption and ensure survivability against both random failures and deliberate attacks, we resort to complex network theory and propose an energy-aware preferential attachment (EPA) model to generate a robust topology for WSNs. In the proposed model, by taking the transmission range and energy consumption of the sensor nodes into account, we combine the characters of Erdős -Rényi (ER) model and Barabasi-Albert (BA) model in this new model and introduce tunable coefficients for balancing connectivity, energy consumption, and survivability. The correctness of our theoretic analysis is verified by simulation results. We find that the topology of WSNs built by EPA model is asymptotically power-law and can have different characters in connectivity, energy consumption, and survivability by using different coefficients. This model can significantly improve energy efficiency as well as enhance network survivability by changing coefficients according to the requirement of the real environment where WSNs deployed and therefore lead to a crucial improvement of network performance.

Routing Protocol for Hybrid Ad Hoc Network using Energy Prediction Model (하이브리드 애드 혹 네트워크에서의 에너지 예측모델을 이용한 라우팅 알고리즘)

  • Kim, Tae-Kyung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.165-173
    • /
    • 2008
  • Hybrid ad hoc networks are integrated networks referred to Home Networks, Telematics and Sensor networks can offer various services. Specially, in ad hoc network where each node is responsible for forwarding neighbor nodes' data packets, it should net only reduce the overall energy consumption but also balance individual battery power. Unbalanced energy usage will result in earlier node failure in overloaded nodes. it leads to network partitioning and reduces network lifetime. Therefore, this paper studied the routing protocol considering efficiency of energy. The suggested algorithm can predict the status of energy in each node using the energy prediction model. This can reduce the overload of establishing route path and balance individual battery power. The suggested algorithm can reduce power consumption as well as increase network lifetime.

  • PDF

Implementation of Smart Metering System Based on Deep Learning (딥 러닝 기반 스마트 미터기 구현)

  • Sun, Young Ghyu;Kim, Soo Hyun;Lee, Dong Gu;Park, Sang Hoo;Sim, Issac;Hwang, Yu Min;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.829-835
    • /
    • 2018
  • Recently, studies have been actively conducted to reduce spare power that is unnecessarily generated or wasted in existing power systems and to improve energy use efficiency. In this study, smart meter, which is one of the element technologies of smart grid, is implemented to improve the efficiency of energy use by controlling power of electric devices, and predicting trends of energy usage based on deep learning. We propose and develop an algorithm that controls the power of the electric devices by comparing the predicted power consumption with the real-time power consumption. To verify the performance of the proposed smart meter based on the deep running, we constructed the actual power consumption environment and obtained the power usage data in real time, and predicted the power consumption based on the deep learning model. We confirmed that the unnecessary power consumption can be reduced and the energy use efficiency increases through the proposed deep learning-based smart meter.

Generation and Evaluation of Power Model for Mobile AMOLED Display Using RGB Color Space Partitioning Method Considering Power (전력을 고려한 RGB 색 공간 분할 기법 및 이를 활용한 AMOLED 디스플레이의 소모 전력 모델 생성 그리고 평가)

  • Baek, Dusan;Choi, Yoo-Rim;Lee, Byungjeong;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.9
    • /
    • pp.335-344
    • /
    • 2018
  • The power model is needed to handle the power consumption of mobile AMOLED display at the software level. However, the existing studies to generate the power model have required the experimental environment and equipment for the power measurement activity. In addition, the combination of RGB values used for modeling was imprudent and small, so it was difficult to reflect the mutual influence between the RGB values into the model. To solve these problems, we propose an RGB color space partitioning method, which is used to prudently sample the combinations of the RGB values based on the color or the power. We also propose a process for generating a mapping table composed of . We analyzed the characteristics of the samples generated according to the proposed partitioning methods, taking into account the color and the power, and generated the mapping table for the AMOLED display. Furthermore, we confirmed the reusability of the mapping table by utilizing one mapping table multiple times in evaluating different power models. These mapping tables are provided to researchers and can be used to generate and evaluate power models without power measurement activities.

A Study on ZigBee Application Model Development using UML (UML을 이용한 지그비 어플리케이션모델개발에 관한 연구)

  • Jung, Seung-Mo;Yoo, Joo-Hyoung;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1814_1816
    • /
    • 2009
  • ZigBee is a technology that is being rapidly developed since its power consumption is low and the stability of its communication is high. However, documented data which is coded using conventional programming languages such as C or assembly programming language would not be able to fulfill the various requirements upon application development by ZigBee. Unified Modelling Languge (UML) could be one of the alternatives to solve this problem. UML provides a variety of diagrams by which the results of the software development can be presented visually and by which the developers can communicate more spontaneously. This paper shows the results of an ongoing study into the application of model-driven methods for ZigBee Application. Also, this paper shows that this approach is feasible by comparing memory usage, latency, and power consumption of UML modelling code with those of handwritten code.

  • PDF

Safety Critical I&C Component Inventory Management Method for Nuclear Power Plant using Linear Data Analysis Technic

  • Jung, Jae Cheon;Kim, Haek Yun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.84-97
    • /
    • 2020
  • This paper aims to develop an optimized inventory management method for safety critical Instrument and Control (I&C) components. In this regard, the paper focuses on estimating the consumption rate of I&C components using demand forecasting methods. The target component for this paper is the Foxboro SPEC-200 controller. This component was chosen because it has highest consumption rate among the safety critical I&C components in Korean OPR-1000 NPPs. Three analytical methods were chosen in order to develop the demand forecasting methods; Poisson, Generalized Linear Model (GLM) and Bootstrapping. The results show that the GLM gives better accuracy than the other analytical methods. This is because the GLM considers the maintenance level of the component by discriminating between corrective and preventive.

Evaluation on the Cyclic and Adiabatic Performance of a Small Multi-Refrigeration system (김치냉장고를 중심으로한 소형 멀티 냉동시스템의 성능특성 변화에 관한 연구)

  • Lee, Moo-Yeon;Choi, Seok-Jae;Kim, Sang-Ok;Lee, Won-Keum
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.769-774
    • /
    • 2003
  • In this paper, the performance of a domestic Kim-Chi refrigerator is predicted by using a calculation model & experiment. The objectives of this study are to find out the best design points of a refrigeration system and calculate an adiabatic characteristic to change outdoor temperature. The best design points such as refrigerant charge and capillary length were experimentally investigated. And the calculation model is conducted as a function of calculation parameters and outdoor temperature. According to this study results, the best design points of a refrigeration system are each 95g of a refrigerant charge and 3500/3500mm of capillary lengths. And the power consumption is 13.578 Kwh/month. And a part of the worst heat loss is a front side of a domestic Kim-Chi refrigerator body.

  • PDF