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1. Introduction

1.1 Background 

In operating nuclear power plants, it is 

important to have an adequate number of 

spare parts specifically for safety related 

systems. In accordance with Technical Speci-

fication (Chapter 16 of FSAR), the repair time 

of safety critical I&C component is set for two 

(2) hours. Inventory management of such 

component is a crucial criterion. If it is not 

met, whenever such component fails, and repairs 

are required, the nuclear plant might be shut 

down as a result of inefficient inventory man-

agement. To cope with this tough condition, 

maintenance personnel gives higher priority to 

the availability of such component. This prioritiza-

tion results in inefficient spare parts management 

which results in high maintenance cost.

The accurate forecast of needed spare parts 

can be challenging under the conditions of 

intermittent demand, low failure rates and high 

consequences of stockout [1]. Due to these 

difficulties, there are no models for forecasting 

spare parts for OPR-1000 NPPs. If the spare 

parts are not supplied in a timely manner, the 

availability of the power plant may be reduced. 

As a rule of thumb, the more accurate the 

demand forecast, the more the plant efficiency 

is enhanced.

Optimized inventory management will enable 

efficient operation. Low forecasting accuracy 

of number of spares needed may make it 

difficult to ensure that the plant’s resources 

are efficiently utilized. Low forecasting accuracy 

may cause shortage of parts (or inventory) or 

cause budget losses due to excess inventory. 

This is an important part in terms of ensuring 

plant utilization rates and efficient budgeting. 

As such, it can be said that improving the 

accuracy of demand forecasting is the basis 

for maintaining proper inventory. However, 

intermittent demand is one of the main reasons 

making forecasting demand is difficult.

Electric Power Research Institute (EPRI) pres-

ented several technical reports that support 

optimization of inventory of spare parts in a 

nuclear utility [2], [3]. However, it is difficult 

to apply to operating plants because it depends 

on overseas inventory procurement conditions 

and available models can not apply directly 

without modification [4].

Some companies use the Economic Order 

Quantity (EOQ) model, which is a classic model 

in production/operational management used to 

calculate the appropriate number of spare 

parts required. In addition, the Advanced-EOQ 

model, which is an improvement to the EOQ 

model is also used in consideration of unique 

areas such as nuclear power plants [5]. 

However, in domestic nuclear power plants, 

this work is still done manually through the 

experience and intuition of field engineers. 

Therefore, spare parts should be carefully 

purchased in consideration of the importance 

and characteristics of the equipment, and the 

accurate inventory algorithm should be applied 

to the appropriate level of spare parts

1.2 Forecast of Intermittent Demand

In the past, demand was predicted using a 

qualitative method. Then, demand forecast was 

attempted using time series methods such as 

moving average, exponential smoothing or causal 

models such as regression [6]. Especially, 

exponential smoothing method is a very popular 
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method and has been one of the standards in 

forecasting demands [7]. Spare parts in nuclear 

power plants are typically used intermittently, 

so these methods have shown low accuracy 

because it does not consider the intermittent 

demand which does not follow normal dis-

tribution and is not well forecasted by the 

usual time series methods. There are not so 

many methods to deal with intermittent 

demands. In 1972, Croston proposed a time 

series prediction method that modified exponential 

smoothing [8]. Syntetos and Boylan presented 

an improved method for the bias problem 

occurring with the Croston method [9]. In addition, 

there have been studies on how to use boot-

strapping utilization and distribution [10].

1.3 Prognosis of Demand

According to the IEC 62550, there are three 

categories of demand forecast procedures [11].

∙ Deterministic procedures;

∙ Statistical analysis based on consumption 

data;

∙ Subjective estimation.

Deterministic procedures are used when the 

demand for future periods can be forecast with 

good precision. An inventory policy can be 

developed in order to satisfy all spare parts 

requests. On the other hand, when it is not 

possible to forecast future demand with ac-

ceptable precision, statistical analysis is used. 

These models assume that future demand is a 

random variable having a known probability 

distribution. The inventory policy is designed 

based on the service level desired. Service 

level is the percentage of spare parts requests 

that are satisfied immediately.

2. Develop the Model for Optimum 

Inventory Management

The framework developed in this paper is 

divided into three stages; data analytics stage, 

model development stage and model comparison 

stage as represented in Figure 2. It aims at 

bringing out an optimal demand forecasting 

model based on the consumption data of spare 

parts.

2.1 Data Analytics Routine

2.1.1 Define Input Data

In this paper, five (5) different type of con-

trollers of the SPEC 200 card are analyzed for 

defining static availability. Table 1 shows the 

calculated Mean Time between Failure (MTBF) 

and static availability for the SPEC 200 con-

trollers. Static availability for each product is 

[Figure 1] Model development framework

<Table 1> SPEC 200 Data

2AO-L2

C-R

Contact 

Output 

Isolator

2813 0.5 0.0004
0.99999

998

N-2AO-

V2I

Voltage to 

Current 

Converter

3463 0.5 0.0003
0.99999

998

N-2ARP

S05

Multi nest 

power 

supply

336 0.5 0.0030
0.99999

983

N-2AX Multiplier 3680 0.5 0.0003
0.99999

998
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defined by Equation (1)

  (1)

Where, MTTR which is defined as the time 

required on average to detect a failed element 

within the system and complete the actions 

necessary to restore full system function. The 

MTTR for the SPEC 200 card is specified for 

half (0.5) hours for the conservatism of the 

analytic results. 

Data analytics stage is dedicated to identifying 

the consumption datasets of process controller 

(SPEC-200). The acquired data from NPP main-

tenance experience is filtered to remove the 

inappropriate data or worthless data. For the 

purpose of applying data filtering and extraction, 

two mathematical functions are utilized; weighted 

moving average and exponential smoothing. As 

shown in Equation (2), weighted moving average 

applies different weights for specific planning 

periods.

(2)

When similar impacts are present on a regular 

period, higher weights can be applied to the 

values of that period. If there is a large demand 

for spare parts during the predictive outage 

period every 18 months, a higher weight can 

be applied to the value of that period.

On the other hand, exponential smoothing 

function is suitable for forecasting data with no 

clear trend or seasonal pattern [12]. It is a 

technique that can be applied to time series 

data to make forecasts. The procedure does 

not require all individual values of the past but 

only three data elements are required; the 

previous planning period (Ppredicted,old), actual 

demand for the previous planning period 

(Pactual,old), and smoothing function (α) which is 

specified as values between 0 and 1. Equation 

(3) shows the exponential smoothing by the 

first order function.

Pnew = Ppredicted,old + α(Pactual,old – Ppredicted,old)   (3)

The new prognosis Pnew is computed from 

the preceding prognosis Ppredicted,old, corrected 

by the product of the smoothing coefficient α

and the difference between the actual and 

predicted demand of the preceding planning 

period.

2.2 Model Development Routine

In this stage, the demand forecasting models 

which are Poisson distribution, GLM, and boot-

strapping, are used.

2.2.1 Poisson distribution model

The Poisson distribution is a discrete probability 

distribution that expresses the probability of a 

given number of events occurring in a fixed 

interval of time or space if these events occur 

with a known constant rate and independently 

of the time since the last event [13]. According 

to the IEC 62550, if the value (λT), average 

number of demands during a given time T, is 

smaller than 50, the Poisson distribution can 

be used for sparing model [11]. The Poisson 

distribution can be applied when some measure 

is continuous while the number of events which 

may occur during this continuous random variable 

is established by counting. It can be applied 
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when the probability of occurrence is very 

small. This is the case when the time interval 

is long and/or the demand rate is low. 

2.2.2 General Linear Model (GLM)

GLM is a generalization of the linear re-

gression model that enables a model to be 

defined for an output variable that is not 

normally distributed. GLM uses a link function 

or canonical function to define the relationship 

between the predictor and the response 

variables. Since the failure rate of the cards 

follows Poisson distribution, the link function 

is given as Equation (2).

log(μ) = Xb        (4)

where, μ is the response variable, X is the 

predictor variable vector and b is the coefficient 

matrix.

Two cases of the GLM are investigated. The 

first case computes the relationship between 

the parameters and the quantity of spares at 

each interval of time. The second case inves-

tigates the effect of cumulative quantity of 

spares on model performance.

The GLM can be expressed as indicated in 

equation (5).

log(Qty) ~ ModelNum + MTBF + 

Mtype + Uptime                    (5)

where, ModelNum is the installation quantity 

of specific controller, Mtype is the maintenance 

type (either corrective or preventive).

GLM generalizes linear regression by allowing 

the linear model to be related to the response 

variable via a link function and by allowing the 

magnitude of the variance of each measurement 

to be a function of its predicted value.

2.2.3 Bootstrapping Model

Hua et al. suggested that when historical 

data are limited, the bootstrap method is a 

useful tool to estimate the demand of spare 

parts [14]. Bookbinder and Lordahl found the 

bootstrap superior to the normal approximation 

for estimating high percentiles of spare parts 

demand for independent data [15]. Wang and 

Rao also found the bootstrap effective to deal 

with smooth demand [16]. All these papers do 

not consider the special problems of managing 

intermittent demand. Willemain et al. provided 

an approach of forecasting intermittent demand 

for service parts inventories [17]. They developed 

a bootstrap-based approach to forecast the 

distribution of the sum of intermittent demands 

over a fixed lead time. One standard choice for 

an approximating distribution is the empirical 

distribution of the observed data. This method 

can be applied not only to find the average 

demand (that can be the demand forecast) but 

also the intervals between non zero-demand 

or other desired values.

2.3 Model Comparison Routine

After developing these models, the models 

are estimated and compared in model comparison 

stage. Root Mean Squared Error (RMSE) and 

R-squared which are frequently used measures 

are utilized to estimate the suitability of the 

model.

The RMSE is the square root of the variance 

of the residuals. It indicates the absolute fit of 

the model to the data, that is, how close the 

observed data points are to the predicted 
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values of the model. Since RMSE is an absolute 

measure of fit, lower values of RMSE indicate 

better fit. RMSE is a good measure of how 

accurately the model predicts the response, 

and it is the most important criterion for fit if 

the main purpose of the model is prediction 

[18][19]. The RMSE is computed as shown in 

equation (6).

(6)

3. Implementation of Inventory 

Optimization Model

3.1 Execution of Data Analytics Routine

As discussed in Chapter 2, the proposed 

model is divided into three stages; data analytics, 

model development, and model comparison. The 

data analytics stage can be described in two 

stages; the first stage is data identification and 

acquisition while the second is filtering and 

data extraction. Figure 3 shows the scheme 

implemented for the data analytics stage.

3.1.1 Data Identification and Acquisition Stage

The data is a collection of six plant sites. 

The plants are labelled from A to F for an-

onymousity. Each plant site consists of two 

units. Each plant site has different commercial 

operation date (COD). The quantity of the 

installed SPEC 200 is the same for all units 

because this data is obtained from OPR-1000 

units.

3.1.2 Data Filtering Stage

Usually, data entries often contain errors. 

The objective of preprocessing is to remove 

or reduce these errors before using the data in 

any model development. Entries such as date 

must be formatted appropriately. Visualization 

of the data shows that the part replacement 

date and the COD columns needed to be 

reformatted.

Summary report of the data shows the 

minimum replacement quantity of 1 and a 

maximum replacement quantity of 60. The 

median replacement quantity is also 1 which is 

an indication of an average small quantity of 

part replacements per maintenance work. Also, 

the replacement history spans from 2004 to 

2019 which is a period of 16 years.

Figure 3(a) shows that the quantities of 

parts replaced during the 16 years of main-

tenance work are between 1 and 10 quantities. 

Some records show that replacement quantities 

are between the range of 10 to 30 and a very 

few record shows replaced parts up to 60. It 

implies the nominal quantity needed for corrective 

maintenance actions will fall into the largest 

cluster of 1 to 10 quantities.

The other two clusters indicate a situation in 

which both corrective and preventive actions 

were taken.

Also, some plant site record does not span 

the 16 years record in view. This is processed 

by removing the plant records that do not 

cover the 16 years analysis period in view [Figure 2] Scheme of Data Analysis Routine
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(2004 to 2019). Figure 4(b) depicts the part 

replacement data after filtering by weighted 

moving average, and exponential smoothing.

Figure 4 shows the plant data which were 

aggregated and visualized by plant types. From 

the plot, plant site A consumed the largest 

SPEC 200 spare part and plant site D consumed 

the least. Also, the N-2AO-V2I card represents 

the highest average spare replacement across 

all plants as shown in Table 2. It indicates 

data for installed quantity versus average 

stored spart-part per controller model for all 

plants. In Figure 5, the distribution of spare- 

part per model of controller for all plant sites 

is shown. The distribution is how many sets of 

specific controller were acquired from Korean 

NPPs. This information is the sum of each 

NPP group. So, the statistics is plant specific.

3.2 Test of Developed Model Routine

Figure 6 shows how the model development 

routine is deployed in this work. The tool used 

for developing these models is MATLAB. The 

models are tested using plant data as previously 

described. The models are implemented in the 

following sections.

[Figure 3] Spare part replacement history for all plant sites (a) before data filtering (b) after data filtering

[Figure 4] Spares by plant sites

<Table 2> Installed Quantity versus Average Stored 

part per Controller Model (all plants)

Model No Install Qty Avg. Spare

1 'N-2AI-I2V' 656 4.3125

2 'N-2AO-V2I' 1696 9.75

3 'N-2AP+ALM-AR' 240 3.3125

4 'N-2ARPS05-A6-O' 48 2.0625

[Figure 5] Distribution of spare-parts per model of 

controller for all plant sites
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3.2.1 Poisson Distribution Model 

The Poisson distribution is used quite often 

in sparing analysis. The occurrence of failed 

components and the demand for spares are 

events that can be described by Poisson distribution 

when they occur at a constant average rate 

and when the number of events/failures at one 

instance of time are independent of the number 

of events at any other interval/instance of time. 

The results of this batch processing is represented 

by the format of contingency table as Table 3.

With lead time t=3 years, the cumulated 

failure rate,  per specific controller is;

For I2V card: 

For V2I card: 

For ALM card:

For PS card: 

A. Evaluation of Poisson Model

Figure 7 shows the plot of the estimated spare 

versus the actual data for each card type.

In order to evaluate the model, the Root 

[Figure 6] Flow diagram of model development routine

<Table 3> Contingency Table

Spares

(n)

Confidence 

Level

P_I2V P_V2I P_ALM P_PS

0 0.6251 0.2301 0.7742 0.6514

1 0.9188 0.5682 0.9723 0.9306

2 0.9878 0.8165 0.9977 0.9905

3 0.9986 0.9382 0.9999 0.9990

4 0.9999 0.9828 1.0000 0.9999

5 1.0000 0.9960 1.0000 1.0000

6 1.0000 0.9992 1.0000 1.0000

7 1.0000 0.9999 1.0000 1.0000 [Figure 7] Estimated spare versus Actual data
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Mean Squared Error (RMSE) measure is used. 

Table 4 represents the computed RMSE values 

for the SPEC 200 cards. There is a large 

error between calculated values and the real 

observed value from data set. Table 4 indicates 

RMSE for SPEC 200 Cards for Poisson distribution.

The specific reason why these results were 

brought out, was that the observed values did 

not exclusively represent failed components. 

Therefore, the effects either failure rate or 

MTBF may not be affected by the observations. 

The Average RMSE of this model is calculated 

as;

Average RMSE = mean (RMSE) = 7.9887

3.2.2 Generalized Linear Model (GLM)

A. CASE 1: Classification by maintenance 

types

This case separates the maintenance actions 

into three groups:

∙ Corrective maintenance: 1~15 spares

∙ Corrective maintenance and preventive 

maintenance: 15~30 spares

∙ Corrective maintenance and more preventive:  

more than 30 spares

The rationale for this is that the real failure 

rate of SPEC 200 is low. However, it is 

common to replace associated cards that are in 

line with the defective card so that the entire 

system is restored to default condition and the 

root cause of the failure is eliminated altogether. 

The estimated coefficients is given below 

along with the p-value:

Except for the p-values of the first term in 

the Table 5 above, the p-values of the other 

terms are lower than 0.05. This means that 

these predictor variables are significant in 

predicting the quantity of spares using this 

model. The Estimate values in the table are 

the values of the coefficient matrix for the 

GLM.

A-1. Evaluation of GLM Case 1

Figure 8 shows the Q–Q plot of GLM case 1. 

Since most of the points on the Q–Q plot 

approximately laid on the straight line, then 

the residuals are to be distributed normally. 

Although, some points wonder off the line. The 

histogram also shows that the residual is 

normally distributed with mean residual value 

which is distributed to zero region. Also, the 

leverage plot shows the distribution of the 

residuals around zero value and that it is 

mostly positively biased.

From Figure 8 to 10 depict the normal 

probability plot of residuals, histogram of 

residuals and order  plot of leverage for GLM 

case 1 respectively.

<Table 5> Estimated coefficients (GLM Case 1)

Predictor Variable Coefficient p-Value

ModelNum_N-2AO

-V2I
-0.19647 0.23391

ModelNum_N-2AP

+ALM-AR
-0.6495 5.1391e-05

ModelNum_N-2AR

PS05-A6-O
0.72676 0.0057511

MTBF -0.00016173 0.0015068

Mtype 1.9434 9.673e-88

Uptime -0.051963 0.0029278

<Table 4> RMSE for SPEC 200 Cards (Poisson)

Model No RMSE

1 'N-2AI-I2V' 5.8041

2 'N-2AO-V2I' 17.9374

3 'N-2AP+ALM-AR' 3.4369

4 'N-2ARPS05-A6-O' 4.7762
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The calculated R-squared Value and adjusted 

R-squared value of this model are: 

∙ R-squared = 0.8229 

∙ Adjusted R-squared = 0.9933

The calculated RMSE value of this model is: 

3.0527.

A-2. CASE 2: Cumulating replacement

In this case, the replacement quantity is 

changed to the cumulative replacement quantity. 

This is because the cumulative replacement 

quantity over the uptime can be a major variable. 

B. Evaluation of GLM Case 2

Figure 11 shows the Q–Q plot in case of 

[Figure 10] Order plot of leverage (GLM case 1)

<Table 6> GLM case 1 results

GLM 

Case
R-Squared

Adjusted 

R-Squared
RMSE

Case 1 0.8229 0.9933 3.0527

[Figure 8] Normal probability plot of residuals (GLM case 1)

[Figure 9] Histogram of residuals (GLM case 1)

<Table 7> Estimated coefficients (GLM 2)

<Table 7> Estimated coefficients (GLM 2)

Generalized linear regression model: log(Qty) ~ ModelNum + MTBF + Mtype + Uptime
Distribution = Poisson

Estimate        SE        tStat       pValue                      
        __________    _________    ______    ___________

    ModelNum_N-2AO-V2I            0.58952      0.06427    9.1726     4.6156e-20
    ModelNum_N-2AP+ALM-AR         0.30469     0.060748    5.0156     5.2878e-07
    ModelNum_N-2ARPS05-A6-O       0.59215      0.13712    4.3186     1.5701e-05
    MTBF                       0.00013063     2.86e-05    4.5674      4.939e-06
    Mtype                         0.97758     0.039761    24.587    1.7603e-133
    Uptime                       0.010003    0.0081362    1.2294        0.21893
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cumulating replacement of spare parts. Since 

the points on the Q–Q plot approximately lie on 

the straight line, the residuals are normally 

distributed. The histogram shown in Figure 12 

also shows the normal distribution of the residuals. 

The leverage plot shows the distribution of the 

residuals around zero value. The test of a good 

model is one with normally distributed residuals. 

This means that the mean residual value is 

close to 0 and the variance is not more than 1.

The calculated R-squared Value and adjusted

R-squared value of this model are: 

∙ R-squared = 0.7958

∙ Adjusted R-squared = 0.7848

The calculated RMSE value of this model is: 

7.4390 as indicated in Table 8.

3.2.3 Bootstrapping Model 

The bootstrap approach is to resample from 

the 16 years spare replacement data, with replace-

ment, three times, creating a bootstrap scenario 

of total demand over the three-year lead time. 

This process is then repeated several times to 

build a statistically rigorous picture of the entire 

distribution of possible lead-time demand values 

for each part item.

Figure 14 shows the results of 500,000 

bootstrap scenarios. The histograms indicate 

that the most likely value for lead-time demand 

is zero (0), but that lead-time demand could 

be as great as 50 or more units. A cumulative 

probability density function is constructed such 

that the value of spares that corresponds to 

the confidence level of 99.99% is taken as the 

model estimation result. Figure 15 depicts the 

[Figure 11] Normal probability plot of residuals (GLM 

case 2)

[Figure 12] Histogram of residuals (GLM case 2)

[Figure 13] Case order plot of leverage (GLM case 2)

<Table 8> GLM case 2 results

GLM 

Case
R-Squared

Adjusted 

R-Squared
RMSE

Case 2 0.7958 0.7848 7.4390
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cumulative distribution plot for each card type 

based on the histogram of the bootstrapped 

samples.

A. Evaluation of Bootstrapping model

Figure 16 shows the plot of the estimated 

spare versus the actual data for each card 

type. In order to evaluate the model, the Root 

Mean Square Error (RMSE) measure is used. 

The RMSE is shown in Table 9.

Table 9 shows the computed RMSE values 

for the SPEC 200 cards using the bootstrap 

method. There is a large error between calculated 

values and the real observed value from data 

set. Just like the case of the Poisson distribution, 

the observed values do not exclusively represent 

failed components and the effect of failure rate 

or MTBF cannot be observed. Typically, during 

maintenance activities it is common to replace 

other components that are in line with the 

failed components to ensure that that the root 

cause is eliminated.

Also, it is common during troubleshooting to 

replace associated components in other to cut 

down repair time. Unlike the Poisson method, 

bootstrap estimates are higher than the actual 

values. This can guarantee that spares will always 

be available to assure 99.99% available. How-

ever, it is not optimum as it can lead to hold 

down of capital and high inventory cost.

Average RMSE value of the bootstrapping 

method can be computed by calculating the mean 

RMSE and the value obtained was 31.3850.

[Figure 14] The results of 500,000 bootstrap scenarios

[Figure 15] Cumulative distribution plot

[Figure 16] Estimated spare versus Actual data

<Table 9> RMSE for SPEC 200 cards (Bootstrapping)

Model No RMSE

1 'N-2AI-I2V' 21.475

2 'N-2AO-V2I' 56.94

3 'N-2AP+ALM-AR' 10.14

4 'N-2ARPS05-A6-O' 11.568
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4. Result of Model Development

The first model (Poisson distribution) is based 

on the assumption that the data can be described 

by a Poisson distribution and that failure of 

components occurs on an average failure rate. 

The model has large root mean square error 

indicating that it is not a very good model that 

can fit the data accurately. Also, the model 

does not account for the different maintenance 

types carried out.

The second model utilized the generalized 

linear regression model. This method allows 

for modelling of the different types of main-

tenance work. The first case of the GLM estimates 

the quantity of spares needed at an instance of 

time. The second case returns the cumulative 

quantity needed over the uptime period. In 

comparison, using the R-squared statistic, the 

first GLM case returned an R-squared value 

of 0.8229 which is better than the second 

GLM case of R-squared value of 0.7958.

The third model uses bootstrap statistics. 

Bootstrapping in a statistical method of generate 

many samples from small sample size. In this 

method, the sample size will be expanded thereby 

making estimates closer to the population values. 

The method evaluates the cumulative distribution 

function (CDF) of the bootstrapped spare quantity 

for each card. The cumulative quantity that cor-

responds to the 99.99% cumulative probability 

is taken as the quantity of spares required to 

achieve 99.99% confidence level within the lead 

time of 3 years.

The comparison table for the three types of 

model is indicated in Table 10. The GLM model 

for case 1 has the lowest RMSE value and is 

considered as the best model between the 

three. This is expected because it considered 

the maintenance level whether corrective or 

preventive unlike the other two models which 

did not consider the maintenance level.

5. Conclusion and Further Study

At present, Korean NPP utility company is 

implementing Material Resource Planning (MRP) 

system for effective operation of plants. However, 

purchasing spare parts based on engineer's 

know-how without considering the optimal spare 

parts based on the data can cause economic 

loss or threaten safety of nuclear power plant 

due to failure of maintaining proper inventory.

Optimal sparing model which forecasts the 

demand of intermittent spare parts in nuclear 

power plant is proposed using big data analytics 

in this research. After analyzing and comparing 

Poisson method, generalized linear regression 

method, and bootstrapping method, the optimal 

demand forecasting model is selected. In addition, 

since it is based on actual consumption data, it 

can be said that it is more accurate than the 

estimated demand by the engineer's know-how. 

With the results of this research, field engineers 

can calculate the appropriate spare part quantity 

for each material and can identify when to buy.

The results in this work show that among 

those three analytical methods, GLM gives the 

best accuracy than the other methods, because 

it considers the maintenance level of the com-

ponent by discriminating its maintenance period 

<Table 10> The comparison table

POISSON GLM
BOOT

STRAPPING

RMSE 7.9887 3.0527 31.3850
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either from corrective or preventive.

As for the further study, the linear regression 

method will be applied for the analysis of the 

forecasting demand. In addition, developing non-

linear regression model using artificial neural 

networks (ANN) to improve accuracy will be 

conducted.
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