Abstract
Recently, studies have been actively conducted to reduce spare power that is unnecessarily generated or wasted in existing power systems and to improve energy use efficiency. In this study, smart meter, which is one of the element technologies of smart grid, is implemented to improve the efficiency of energy use by controlling power of electric devices, and predicting trends of energy usage based on deep learning. We propose and develop an algorithm that controls the power of the electric devices by comparing the predicted power consumption with the real-time power consumption. To verify the performance of the proposed smart meter based on the deep running, we constructed the actual power consumption environment and obtained the power usage data in real time, and predicted the power consumption based on the deep learning model. We confirmed that the unnecessary power consumption can be reduced and the energy use efficiency increases through the proposed deep learning-based smart meter.
기존의 전력 시스템에서 불필요하게 생성되거나 낭비되는 예비전력을 감소시키고 에너지 사용 효율을 개선하기 위한 연구가 최근 활발히 진행되고 있다. 본 연구에서는 전기기기들의 전원 제어를 통한 에너지 사용 효율을 개선하기 위해 스마트그리드의 요소 기술 중 하나인 스마트미터기를 개발하며, 실시간으로 측정된 전력 사용량을 딥 러닝을 통해 전력 사용량의 트렌드를 분석 및 예측한다. 이후 예측된 전력 사용량과 실시간 전력 사용량을 비교하여 전기기기들의 전원을 제어하는 알고리즘을 제안 및 개발한다. 제안한 딥 러닝 기반의 스마트미터기의 성능을 확인하기 위해서 실제 전력 소비 환경을 구축하였고, 실시간으로 전력 사용 데이터를 확보하여 딥 러닝 모델에 학습시킨 뒤 전력 사용량을 예측하였다. 예측된 값과 실제 사용량을 실시간으로 비교하여 예측을 벗어난 기기들의 전원을 제어하여, 전력 사용량을 감소시키고 에너지 사용 효율이 개선되는 결과를 확인하였다.