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Abstract 

 
Recent years have witnessed a dramatic increase in topology research of wireless sensor 

networks (WSNs) where both energy consumption and survivability need careful 

consideration. To balance energy consumption and ensure survivability against both random 

failures and deliberate attacks, we resort to complex network theory and propose an 

energy-aware preferential attachment (EPA) model to generate a robust topology for WSNs. 

In the proposed model, by taking the transmission range and energy consumption of the 

sensor nodes into account, we combine the characters of Erdős -Rényi (ER) model and 

Barabasi-Albert (BA) model in this new model and introduce tunable coefficients for 

balancing connectivity, energy consumption, and survivability. The correctness of our 

theoretic analysis is verified by simulation results. We find that the topology of WSNs built 

by EPA model is asymptotically power-law and can have different characters in connectivity, 

energy consumption, and survivability by using different coefficients. This model can 

significantly improve energy efficiency as well as enhance network survivability by 

changing coefficients according to the requirement of the real environment where WSNs 

deployed and therefore lead to a crucial improvement of network performance. 
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1. Introduction 

Due to the convenience of deployment, wireless sensor network (WSNs) have been 

considered as a promising method to realize information transmission in some severe 

environments. For example, in warfare and military applications, WSNs are widely deployed 

to achieve hostile monitoring [1]. The severe environments impose extra challenges on the 

network designs. One key challenge is the limited energy support of the sensor nodes. 

Energy exhaustion or failure of a number of sensor nodes is able to destroy the whole 

network [2]. To conquer these problems, the efficient and effective construction and control 

of WSNs are very important. The main purpose of the construction and control of a topology 

is to achieve higher connectivity, more efficient energy use and better survivability. This 

study aims at providing such a topology for WSNs by using complex network theory.  

In 1999, Barabsi and Albert [3] made a breakthrough in network science by proposing the 

first scale-free model, the Barabasi-Albert (BA) model. Compared with the exponential 

networks (such as pure random networks) [4], the scale-free network has good performance 

on robustness against random removal or failure of nodes and also has a short average path 

length [5], [6]. For WSNs, both robustness and connectivity are important. To increase 

network connectivity, a typical method is to increase the node density, which means the 

average distance between nodes becomes smaller. According to [7], the optimum hop-count 

between a source and a sink should decrease in such high-connectivity networks to achieve 

maximum energy efficiency. In other words, a scale-free topology is helpful to a WSN’s 

performance, in terms of both robustness and energy efficiency. Because of such benefits, 

the BA model has recently attracted interest of researchers in WSNs [3],[8]–[12]. Many 

studies have proposed improved models to balance the energy consumption in WSNs. For 

example, Zhu et al. [13] proposed an energy-aware evolution model and suggested limiting 

the number of nodes in every new comer’s local-area. However, the local-area in this study 

is completely irrelevant to the location of nodes, which is practically unreasonable in WSNs. 

In [14], Zheng et al. proposed the Linear Growth Evolution Model and Accelerated Growth 

Evolution Model. In these two models, if a cluster head loses a link, it needs to add n new 

links to other cluster heads for compensation to ensure the connectivity of the network. 

While this reconstruction mechanism improves the robustness performance under deliberate 

attacks, it in general requires many compensation links which may deplete the node more 

quickly. 

Considering the above issues, this paper proposes an energy-aware preferential attachment 

(EPA) model to balance connectivity, energy cost, and survivability of WSNs. Specifically, 

we divide the topology construction into two phases. In the first phase, we randomly place 

nodes in a fixed region, and each node is able to get other nodes’ information in its 

transmission range. In the second phase, the network evolves according to preferential 

attachment and stops until all nodes are added into the network. 

Interestingly, we find that setting the coefficients of EPA to some specific values will 

accordingly reduce it to the BA model, energy-balanced evolution (EAEM) model which 

only considers energy and degree of node similar to [13], random network model or 

so-called energy-balanced network (EN) model where energy is the only concern in topology 

generation. We apply the mean-field method to analyze the EPA model and obtain the 

degree distribution in a closed form. Both theoretical analysis and simulation have proved 

that EPA is asymptotically power-law, with a degree exponent different from that of the BA 

model. 

The rest of the paper is organized as follows. In section II, we present the EPA model for 
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network topology generation. In section III, we use the mean-field method to derive the 

degree distribution of EPA. In section IV, we provide simulation results to evaluate the 

performance of EPA. Section V concludes this paper. 

2. Scale-Free Models: BA and EPA 

In 1999, Barabasi and Albert proposed the first scale-free model, the BA model, which has a 

power-law degree distribution. This characteristic has been found in many real networks that 

exhibit strong robustness against random failures and attacks. With the BA model, a network 

evolves into a scale-invariant state after t time steps by using the mechanisms of network 

growth and preferential attachment [15], [16]. The algorithm to construct the BA model is 

presented as follows: 

1) Initialization: initialize the network such that it contains an isolated set of 
0m  nodes. 

2) Growth: at every time step, add a new node with 0( )m m  edges and link the new node 

to m different nodes in the network. 

3) Preferential attachment: connect a new node to node i with the probability ( )ik  

which depends on the degree (
ik ) of node i in a way of 

 

 ( )= i

n

i

n

k

k
k


,                          (1) 

 

where 
ik  means the number of edges of node i. 

The degree distribution of the BA model is obtained as: 
  

2( ) 2P k m k  ,                          (2) 

 

where the degree exponent 3  . 

In the preferential attachment step of the above algorithm, the new node prefers to connect 

to nodes with higher degree when joining the network. In real-life networks, incomers may 

only connect to a few others in a local area for their limited information [17][18]. We cannot 

directly apply such preferential attachment to WSNs because of the limitation of the 

transmission range. To generate a scale-free topology for WSNs, we need to modify the 

preferential attachment step in the BA model in a local area restricted by the transmission 

range. 

In addition, the lifetime of a WSN depends on the residual energy of nodes, which is also 

considered in our model. While BA has high robustness against random failure of nodes, it is 

vulnerable to targeted attacks on hub nodes [19], [20]. Conversely, a random network such 

as ER model has high robustness against deliberate attack. [21] shows general networks 

which are neither completely random nor scale-free are desirable in the performance against 

random failure and deliberate attacks. In this study we combine the characters of ER and BA 

by proposing an energy-aware preferential attachment model to improve the robustness 

against both random and deliberate attacks. The algorithm to construct the EPA model is 

presented as follows: 

1) Initialization: initialize the network such that it contains 
0m  nodes randomly linked to 

each other. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016                     3069 

2) Growth: at every time step, add a new node with m
0m（ ）edges and link the new node 

to m different old nodes in the network. 

3) Preferential attachment: the new node selects m different old nodes to form the new 

edges with a probability ( )ik  with 

 

   
1

( ) = (1 ) 1i i
i

i L i

i L i L

k E
k b a a b P i LA

k n E
 

  
            
    


 

,       (3) 

 

where a and b are independently tunable parameters with 1 0a   and 1 0b  , 

respectively, ik  and iE  are the degree and the residual energy of node i, L is the set of 

nodes in the new node’s transmission range, 
Ln  is the number of nodes in the new node’s 

transmission range, LA donates local-area and ( )P i LA  denotes the probability that the 

new node is in the transmission range of existing node i. 

According to Eq. (3), the network can have a quite different structure when with different 

values of a and b. Specifically, EPA reduces to the BA model when  1a b   which 

means that only the node degree dominates the network topology. It has been shown that, 

with the BA model the network will evolve with rather high interconnectivity, achieving 

high robustness to random failure. When 0a   and 1b  , EPA reduces to the random 

network model which has high robustness to deliberate attack. When 0b  , EPA reduces to 

EN model which means that only the residual energy decides the network structure, and 

nodes in this kind of network will have well balanced energy consumption, resulting in 

significantly improved lifetime of the whole network. Finally, when 1a  , EPA reduces to 

the EAEM model which means that both the degree the residual energy decide the network 

structure. By adjusting a and b, one can obtain proper network structures for different 

applications. 

 

3. Asymptotic Analysis 

In the first phase of topology construction, nodes are distributed randomly in region S. 

0t m is the number of nodes after t time steps. We assume that t ≫ 0m , the node density is 

then as approximated as 
 

  0m t t

S S



  .                           (4) 

 

Similar to [11], we assume that the residual energy of node i is 
 

i iE E k e   ,                           (5) 

 

where E is the initial energy of each node, and e is the energy cost for a node to establish a 

link, ik  is the degree of node i. With Eqs. (4) and (5), the total energy of all nodes at step t 

in the new node’s range can be written as 
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0[ ( ) 2 ] /n

i L

E E t m mt e s S


      ,                 (6) 

 

where s is the transmission area of the new node. In Eq. (6), we assume s is big enough so 

that we can use the average energy to approach the total energy in each transmission area. 

With t ≫ 0m , Eq. (6) reduces to 

 

( 2 ) /n

i L

E Et mt e s S


    .                    (7) 

 

Since we place nodes randomly and assume that all the nodes have the same transmission 

range, the probability that the new node is in the transmission range of existing node i can be 

written as 
 

( ) /P i LA s S .                         (8) 

 

In the second phase, the network topology grows according to the preferential attachment 

rule given by Eq. (2). Substituting Eqs. (7) and (8) into Eq. (3), we obtain the preferential 

attachment probability given as 
 

1
( ) b a (1 ) (1 )

2 2

i i
i

k Es
k a b

m s s S E t mt e 

  
          
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 .       (9) 

 

Substituting Eq. (4) into Eq. (9), we have 
 

 
[ ( 2 ) (b 1) 2 ] (1 ) 2 ( 2 ) 2 (1 )

( )
2 ( 2 )

i
i

a b E me e m k a b m E m e mE b
k

m E me t
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


 . (10) 

 

Next, we apply the mean-field theory [12] to derive the degree distribution of the EPA 

model. Specifically, the rate equation for the degree of node i can be denoted by 
 

( )i
i

k
m k

t





 .                         (11) 

 

The initial condition is )=(i ik t m  where 
it  is the time that we need to add node i into the 

network. We solve the Eq. (11) and obtain 

 

1
( ) ( )i i

i

t
k t m

t





  


 
       
 
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,                   (12) 

 

where 

( )2  ( ) 1 2ab E me b e m     , ( ) ( 1 2 2   1 )2) (a b m E me mE b         , 

2 ) 2(E m e    . 

Since 1 0a  and 1 0b  , we have 2 2E me me     and 2 0mE   . When 
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 1a b  , we have 2E me   , 0  , and the EPA model reduces to the BA model. 

When 0b  , we have 2me   , 2me  , and residual energy is the only concern in 

topology generation. When 1a  , we have 2bE me   , 2 (1 )mE b   , and the EPA 

model reduces to the EAEM model. 

Assuming that nodes join the network at equal time intervals, the probability density of 
it  

is given by 

 

0

1
( )iP t

m t



.                         (13) 

 

With Eqs. (12) and (13) , we have  
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From Eq. (14), we obtain the instantaneous degree distribution given as 
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0
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+
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When t  , Eq. (15) reduces to 
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This distribution can be approximated as
( 1)

( ) ( )P k k







 

  , which also satisfies the 

Mandelbrot law with c



 [22]. The degree exponent can be written as 
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2( 2 )
+1= 1

( 2 ) ( 1) 2

E me

a b E me b e m







 
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.             (17) 

4. Simulation Results 

In the following, we present some simulations by Matlab to verify the analysis developed in 

this work. The simulation setup is similar to [14], that is, a network totally has  1000N   

nodes; the initial network has 0 5m  isolated nodes and at every time step a new node joins 

the network; the initial energy of each node is 10000E  , and for each node the energy cost 

for building up a link is  100e  . We randomly place nodes in a square region with a size of 
2 100 100S m  . At each time step, a new node joins the network and connects to m 

different old nodes. We assume that s is big enough so that we can apply the average degree 

approximation in Eq. (5), i.e., 
 

 
s

S
≫

m

N
                            (18) 

 

4.1 Connectivity 

According to (18), transmission range r can be written as 
1

· ·
Qm

r S
N 

 , where Q is a 

positive value which is large enough to obtain (18). Next we investigate the connectivity and 

energy of the network for t time steps with different values of a and b. With 3m   and 

1a b   (the BA model), we plot in Fig. 1 the degree distribution with different Q after 30 

times simulation with each Q. From the figure, we observe that when 15Q  , the analysis 

and simulation match quite well. 

 

 
Fig. 1. Degree distribution with different Q 
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  Fig. 2. Degree distribution of EPA with various a and b 

 

In the following simulations, we set the transmission range as 30r m . Table 1 presents 

the parameters used in our simulation. With a fixed value of m=3, we plot in Fig. 2 the 

degree distribution with respect to various values of a and b. As shown in the figure, both the 

analysis and simulation verify that EPA is asymptotically power-law. In addition, when we 

increase the product of a and b, the network distribution plot is tightened up from an 

exponential curve to a power-law line. 

 
Table 1. Parameters for simulation 

Parameter Value Definition 

n 1000 Number of nodes 

r 30m Transmission range 

S 2100 100m  Entire coverage region 

0m  5 Number of nodes in the 

initial network 

m 3 Links added in each 

time-step 

E 10000 Initial energy of each 

node 

e 100 Energy cost for building 

up a link 

 

4.2 Energy Consumption 

We repeat the simulation for 30 times and depict in Fig. 3 the residual energy for the top-100 

most connected nodes with various values of a and b. As can be seen, we have more 

balanced energy consumption of nodes with 1a   and 0b  . On the other hand, when the 

product ·a b  increases, we have significantly different energy consumption of the nodes, i.e., 
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heavily connected nodes will consume their energy quickly, resulting in highly connected 

but short-lived nodes. The figure also shows that, if we fix the value of ·a b , the network 

will have more balanced energy consumption by decreasing b.  

 
 

Fig. 3. Residual energy of top-100 most connected nodes 

4.3 Survivability 

Next we use a metric proposed by Zhang et al. [23] to evaluate the survivability of the 

network under deliberate attacks. Specifically, the metric is defined as 
 

 
1

( ) ( ) / ( 1) 1
n

i

i

C T k T N N T


   ， ,                   (19) 

 

where T is the maximum number of hops between two nodes, N is network size, C(T) is 

network coverage, and ( )ik T is the number of nodes that one node can reach within T hops. 

T is set as 7 and we repeat the simulation for 30 times. Fig. 4 plots the simulation results of 

survivability under deliberate attacks with different settings of a and b. As can be seen, the 

network has better survivability under deliberate attack with a decrease value of ·a b . When 

·a b  is fixed, the survivability under deliberate attack increases with b. 

Next we use the network efficiency metric proposed by Crucitti et al. [24] to evaluate the 

survivability of the network under random failures of nodes, defined as 

 

1 1

( 1) i j ij

NE
N N d



 ,                       (20) 

 

where ijd  is the number of hops from node i to node j.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016                     3075 

 
 

Fig. 4. Survivability of EPA under deliberate attack 

 

We repeat the simulation for 30 times with each deliberate attack percentage and obtain 

the average values of the network efficiency. Fig. 5 shows the simulation results of 

survivability under random failure by changing a and b. We find that the survivability under 

random failures increases with the increase of the product ·a b . The model reduces to BA 

model when 1a b  , which enables it have strong robustness under random attacks. The 

above analysis shows that, with independent coefficients a and b, the proposed EPA model is 

able to efficiently balance the connectivity, energy consumption and survivability of the 

WSNs. 

 
Fig. 5. Survivability of EPA under deliberate attack 
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5. Conclusions 

By using the complex network theory, this paper has proposed for WSNs an energy-aware 

preferential attachment (EPA) model according to the characteristics of WSNs. The EPA 

model uses tunable coefficients to adjust the structure of the networks to achieve balance 

among connectivity, energy consumption, and survivability of WSNs. Theoretical results 

show that the degree distribution of EPA is asymptotically power-law and simulation results 

are consistent with the theoretic analysis. In addition, EPA exhibits good performance in 

robustness against both random and deliberate attacks. In the future, we plan to investigate 

how to make the best use of the model by exploring the optimal setting of a and b. 
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