• Title/Summary/Keyword: Power Clamp

Search Result 250, Processing Time 0.02 seconds

A 12-kV HBM ESD Power Clamp Circuit with Latchup-Free Design for High-Voltage Integrated Circuits (고전압 집적회로를 위한 래치업-프리 구조의 HBM 12kV ESD 보호회로)

  • Park, Jae-Young;Song, Jong-Kyu;Jang, Chang-Soo;Kim, San-Hong;Jung, Won-Young;Kim, Taek-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The holding voltage of high-voltage devices under the snapback breakdown condition has been known to be much smaller than the operating voltage. Such characteristics cause high-voltage ICs to be susceptible to the transient latch-up failure in the practical system applications, especially when these devices are used as the ESD(ElectroStatic Discharge) power clamp circuit. A new latchup-free design of the ESD power clamp circuit with stacked-bipolar devices is proposed and successfully verified in a $0.35{\mu}m$ 3.3V/60V BCD(Bipolar-CMOS-DMOS) process to achieve the desired ESD level. The total holding voltage of the stacked-bipolar devices in the snapback breakdown condition can be larger than the operating voltage. Proposed power clamp operates safely because of the high holding voltage. From the measurement on the devices fabricated using a $0.35{\mu}m$ BCD Process, it was observed that the proposed ESD power clamp can provide 800% higher ESD robustness per silicon area as compared to the conventional clamps with a high-voltage diode.

Characteristics of a Corona between a Wiring Clamp(Dead End Clamp) and a Porcelain Insulator Used in a 154[kV] Power Receptacle

  • Han, Un-Ki;Kim, Jong-Min;Bang, Sun-Bae;Kim, Han-Sang;Choi, Hyeong-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.57-63
    • /
    • 2007
  • The occurrence of a corona is that electrical discharge due to the heterogeneity that occurs when an electrical field is concentrated in an electrode due to a cusp formed on said electrode. Wire treatment at the end of a 154[kV] dead end clamp for end users accelerates the occurrence of corona, which in turn leads to power loss and noise. In this study, the characteristics of the corona which occurs between porcelain insulators and support clamps of overhead lines used in 154[kV] power receiving facilities for end users were investigated. The corona, which cannot be identified by one common method, was measured utilizing a UV image camera. A risk assessment for fire damage and its status was suggested. The stress distribution of the electrical field by length of bare wire was suggested by means of the finite element method(FEMLAB). As a result, it was found to affect a porcelain insulators. These results can be utilized for the enhancement of clamp installation and safety in power facilities.

Active-Clamp AC-DC Converter with Direct Power Conversion (직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터)

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation

  • Lee Sung-Sae;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2006
  • An active clamp ZVS PWM forward converter using a secondary synchronous switch control is proposed in this paper. The proposed converter is suitable for low-voltage and high-current applications. The structure of the proposed converter is the same as a conventional active clamp forward converter. However, since it controls the secondary synchronous switch to build up the primary current during a very short period of time, the ZVS operation is easily achieved without any additional conduction losses of magnetizing current in the transformer and clamp circuit. Furthermore, there are no additional circuits required for the ZVS operation of power switches. Therefore, the proposed converter can achieve high efficiency with low EMI noise, resulting from soft switching without any additional conduction losses, and shows high power dens~ty, a result of high efficiency, and requires no additional components. The operational principle and design example are presented. Experimental results demonstrate that the proposed converter can achieve an excellent ZVS performance throughout all load conditions and demonstrates significant improvement in efficiency for the 100W (5V, 20A) prototype converter.

Design of a Gate-VDD Drain-Extended PMOS ESD Power Clamp for Smart Power ICs (Smart Power IC를 위한 Gate-VDD Drain-Extened PMOS ESD 보호회로 설계)

  • Park, Jae-Young;Kim, Dong-Jun;Park, Sang-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.1-6
    • /
    • 2008
  • The holding voltage of the high-voltage MOSFETs in snapback condition is much smaller than the power supply voltage. Such characteristics may cause the latcup-like problems in the Smart Power ICs if these devices are directly used in the ESD (Electrostatic Discharge) power clamp. In this work, a latchup-free design based on the Drain-Extended PMOS (DEPMOS) adopting gate VDD structure is proposed. The operation region of the proposed gate-VDD DEPMOS ESD power clamp is below the onset of the snapback to avoid the danger of latch-up. From the measurement on the devices fabricated using a $0.35\;{\mu}m$ BCD (Bipolar-CMOS-DMOS) Process (60V), it was observed that the proposed ESD power clamp can provide 500% higher ESD robustness per silicon area as compared to the conventional clamps with gate-driven LDMOS (lateral double-diffused MOS).

A Self-Driven Active Clamp Forward Converter Using the Auxiliary Winding of the Power Transformer (변압기 보조권선을 이용한 자기 구동 능동 클램프 포워드 컨버터)

  • 이광운;임범선;김희준
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.350-354
    • /
    • 2003
  • This study proposes a new self-driven active clamp forward converter eliminating the extra drive circuit for the active clamp switch. The converter used the auxiliary winding of the power transformer to drive the active clamp switch and a simple R-C circuit to get the dead time between the two switches. The operation principle was presented and experimental results were used to verify theoretical predictions. A 100-W (5V/20A) prototype converter built that only exhibited 1.5-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input of 50V. Finally, the measured efficiency of the converter was presented and the maximum efficiency of 91% was obtained.

Shape Design of the U-Type Wedge of the Rail Clamp for a Container Crane (컨테이너 크레인용 레일클램프의 U형 쐐기 형상설계)

  • Han, D.S.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.117-122
    • /
    • 2009
  • The wedge type rail clamp compresses the rails with small clamping force at first, and with large clamping force when the wind speed increases because of the wedge working. If the supporter is not installed in the rail clamp with V-type wedge when the wind speed increases more and more, the structure will occur overload which leads the structure to fracture. But in the clamp with U-type wedge the supporter is not necessary because the tangential angle of the wedge increases as the sliding distance increases. The proper shape of U-type wedge is determined by the initial clamping force and the tangential angle of the wedge. Accordingly we, first carry out the finite element analysis in order to analyze the relation between the sliding distance and the wedge angle. Next we suggest the proper shape of U-type wedge as analyze the relation between the radius of curvature and the sliding distance.

  • PDF

Fast-Response Load Regulation of DC-DC Converter By High-Current Clamp

  • Senanayake, Thilak Ananda;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.87-95
    • /
    • 2004
  • A new fast-response high-current clamp DC-DC converter circuit design is presented that will meet the requirements and features of the new generation of microprocessors and digital systems. The clamp in the proposed converter amplifies the current in case of severe load changes and is able to produce high slew rate of output current and capability to keep constant the output voltage. This proposed high-current clamp technique is theoretically loss less, low cost and easy to implement with simple control scheme. This is modified from a basic buck topology by replacing the output inductor with two magnetically coupled inductors. Inductors are difference in inductance, one has large inductance and other has small inductance. The inductor with small inductance will take over the output inductor during fast load transient. It speedup the output current slew rate and reduce the output voltage drop in the case of heavy burden load changes.

A Study on Switching Characteristics of Active Clamp Type Flyback Converter with Synchronous Rectifier Driving Signals Controlling Auxiliary Switch (보조스위치가 동기정류기 구동 신호로 제어되는 능동 클램프형 플라이백 컨버터의 스위칭 특성에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • In this paper, the switching characteristics of the active clamp type flyback converter, which is deemed suitable for the miniaturization of the external power supply for home appliance, were analyzed and the process of reducing the switching loss was explained. The active clamp type flyback converter operating in the DCM has confirmed that the surge voltage of the main switch does not occur and the turn-off / on loss of the switch do not occur in principle. Also, in the case of the switch for synchronous rectifier, it was showed that the switch current showed half-wave rectified sinusoidal characteristic, and the switching loss was reduced. The switching characteristics of the experimental results gathered from 120 W class prototype were compared with the theoretical waveform in the steady-state and it was confirmed that the power conversion efficiency of the active clamp type flyback converter was maintained high due to the reduction of the switching loss.

Frequency modulation control for active clamp converter (Active clamp 컨버터의 주파수 변조 제어)

  • Baek J.W.;Son H.S.;Ryu M.H.;Yoo D.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.73-76
    • /
    • 2003
  • A zero voltage soft switching inverter using active clamp is presented for induction heating application. This converter have long been attractive because of its simplicity, high efficiency, and low cost compared to other schemes. In addition to those merits, Input power factor can be improved with a variable frequency control. In this paper, it describe the control method and operational principle to improve a power factor with a single stage US converter using active clamp for induction heating application.

  • PDF