• Title/Summary/Keyword: Potential scenarios

Search Result 476, Processing Time 0.027 seconds

An Analysis of Informal Reasoning in the Context of Socioscientific Decision-Making (과학과 관련된 사회.윤리적 문제에 대한 의사결정 시 수행하는 비형식적 추론 분석)

  • Jang, Hae-Ri;Chung, Young-Lan
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.2
    • /
    • pp.253-266
    • /
    • 2009
  • This study was focused on analyzing students' informal reasoning patterns and their considerations in decision-making on socioscientific issues. This study involved 20 undergraduate students (10 biology majors and 10 non-biology majors) and showed how the two groups responded on socioscientific issues. Semi-structured interviews were conducted twice respectively based on six scenarios of gene therapy and human cloning. The result showed 93% of the total number of participants' decisions were made by rationalistic reasoning, whereas emotional reasoning was 49%, and intuitive reasoning was 27%. Students usually used two or three informal reasoning patterns together. Most of the students took more consideration on social factors. Some perceived ethical and moral implications of the issues, but they did not consider them seriously. They made their decisions depending on their own values, etc. 65% of the participants got their information on socioscientific issues from the mass media. Biology majors hardly used intuitive reasoning compared to non-biology majors. The Biology major group took into deep considerations on socioscientific issues while the non-biology major group seemed to interpret the given scenarios simply. This implied that the content knowledge was a significant factor of their decision-making. Therefore, it is necessary to develop proper science courses for non-major students to improve their decision-making on socioscientific issues. So, when we develop educational materials or programs, we should consider students' reasoning patterns, their considerations in decision-making, and their content knowledge. And because the mass media has the potential to play a key role for an effective education, we need to make a plan to make a practical application.

Analysis of University Cafeteria Safety Based on Pathfinder Simulation

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.209-217
    • /
    • 2024
  • Recent years have seen a notable increase in fire incidents in university cafeterias, yet the social attention to these occurrences remains limited. Despite quick responses to these incidents preventing loss of life, the need for large-scale evacuation in such high foot traffic areas can cause significant disruptions, economic losses, and panic among students. The potential for stampedes and unpredictable damage during inadequate evacuations underscores the importance of fire safety and evacuation research in these settings. Previous studies have explored evacuation models in various university environments, emphasizing the influence of environmental conditions, personal characteristics, and behavioral patterns on evacuation efficiency. However, research specifically focusing on university cafeterias is scarce. This paper addresses this gap by employing Pathfinder software to analyze fire spread and evacuation safety in a university cafeteria. Pathfinder, an advanced emergency evacuation assessment system, offers realistic 3D simulations, crucial for intuitive and scientific evacuation analysis. The studied cafeteria, encompassing three floors and various functional areas, often exceeds a capacity of 1500 people, primarily students, during peak times. The study includes constructing a model of the cafeteria in Pathfinder and analyzing evacuation scenarios under different fire outbreak conditions on each floor. The paper sets standard safe evacuation criteria (ASET > RSET) and formulates three distinct evacuation scenarios, considering different fire outbreak locations and initial evacuation times on each floor. The simulation results reveal the impact of the fire's location and the evacuation preparation time on the overall evacuation process, highlighting that fires on higher floors or longer evacuation preparation times tend to reduce overall evacuation time.In conclusion, the study emphasizes a multifaceted approach to improve evacuation safety and efficiency in educational settings. Recommendations include expanding staircase widths, optimizing evacuation routes, conducting regular drills, strengthening command during evacuations, and upgrading emergency facilities. The use of information and communication technology for managing emergencies is also suggested. These measures collectively form a comprehensive framework for ensuring safety in educational institutions during fire emergencies.

A numerical model for the long-term service analysis of steel-concrete composite beams regarding construction stages: Case study

  • Marcela P. Miranda;Jorge L. P. Tamayo;Inacio B. Morsch
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.199-215
    • /
    • 2024
  • The Caynarachi Bridge is a 130 m long posttensioned steel-concrete composite bridge built in Peru. The structural performance of this bridge under construction loads is reviewed in this paper using numerical simulation. Hence, a numerical model using shell finite elements to trace its deformational behavior at service conditions is proposed. The geometry and boundary conditions of the superstructure are updated according to the construction schedule. Firstly, the adequacy of the proposed model is validated with the field measurements obtained from the static truck load test. Secondly, the study of other scenarios less explored in research are performed to investigate the effect of some variables on bridge performance such as time effects, sequence of execution of concrete slabs and type of supports conditions at the abutments. The obtained results show that the original sequence of execution of the superstructure better behaves mechanically in relation to the other studied scenarios, yielding smaller stresses at critical cross sections with staging. It is also demonstrated that an improper slab staging may lead to more critical stresses at the studied cross sections and that casting the concrete slab at the negative moment regions first can lead to an optimal design. Also, the long-term displacements can be accurately predicted using an equivalent composite resistance cross section defined by a steel to concrete modulus ratio equal to three. This article gives some insights into the potential shortcomings or advantages of the original design through high-fidelity finite element simulations and reinforces the understating of posttensioned composite bridges with staging.

Artificial Intelligence-Enhanced Neurocritical Care for Traumatic Brain Injury : Past, Present and Future

  • Kyung Ah Kim;Hakseung Kim;Eun Jin Ha;Byung C. Yoon;Dong-Joo Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.5
    • /
    • pp.493-509
    • /
    • 2024
  • In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of preadmission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of TBI treatment within the NICU.

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

Impact of IPCC RCP Scenarios on Streamflow and Sediment in the Hoeya River Basin (대표농도경로 (RCP) 시나리오에 따른 회야강 유역의 미래 유출 및 유사 변화 분석)

  • Hwang, Chang Su;Choi, Chul Uong;Choi, Ji Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.11-19
    • /
    • 2014
  • This study is analyze future climate and land cover change affects behaviors for amount of streamflow and sediment discharge within basin. We used the climate forecast data in RCP 4.5 and 8.5 (2011-2100) which is opposite view for each other among RCP scenarios that are discussed for 5th report for IPCC. Land cover map built based on a social economic storyline in RCP 4.5/8.5 using Logistic Regression model. In this study we set three scenarios: one scenario for climate change only, one for land cover change only, one for Last both climate change and land cover change. It simulated amount of streamflow and sediment discharge and the result showed a very definite change in the seasonal variation both of them. For climate change, spring and winter increased the amount of streamflow while summer and fall decreased them. Sediment showed the same pattern of change steamflow. Land cover change increases the amount of streamflow while it decreases the amount of sediment discharge, which is believed to be caused by increase of impervious Surface due to urbanization. Although land cover change less affects the amount of streamflow than climate change, it may maximize problems related to the amount of streamflow caused by climate change. Therefore, it's required to address potential influence from climate change for effective water resource management and prepare suitable measurement for water resource.

Predicting the Potential Distribution of Pinus densiflora and Analyzing the Relationship with Environmental Variable Using MaxEnt Model (MaxEnt 모형을 이용한 소나무 잠재분포 예측 및 환경변수와 관계 분석)

  • Cho, NangHyun;Kim, Eun-Sook;Lee, Bora;Lim, Jong-Hwan;Kang, Sinkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2020
  • Decline of pine forests happens in Korea due to various disturbances such as insect pests, forest fires and extreme climate, which may further continue with ongoing climate change. For conserving and reestablishing pine forests, understanding climate-induced future shifts of pine tree distribution is a critical concern. This study predicts future geographical distribution of Pinus densiflora, using Maximum Entropy Model (MaxEnt). Input data of the model are locations of pine tree stands and their environmental variables such as climate were prepared for the model inputs. Alternative future projections for P. densiflora distribution were conducted with RCP 4.5 and RCP 8.5 climate change scenarios. As results, the future distribution of P. densiflora steadily decreased under both scenarios. In the case of RCP 8.5, the areal reductions amounted to 11.1% and 18.7% in 2050s and 2070s, respectively. In 2070s, P. densiflora mainly remained in Kangwon and Gyeongsang Provinces. Changes in temperature seasonality and warming winter temperature contributed primarily for the decline of P. densiflora., in which altitude also exerted a critical role in determining its future distribution geographic vulnerability. The results of this study highlighted the temporal and spatial contexts of P. densiflora decline in Korea that provides useful ecological information for developing sound management practices of pine forests.

Prediction of the spatial distribution of suitable habitats for Geranium carolinianum under SSP scenarios (SSPs 시나리오에 따른 미국쥐손이 적합 서식지 분포 예측)

  • Oh, Young-Ju;Kim, Myung-Hyun;Choi, Soon-Kun;Kim, Min-Kyeong;Eo, Jinu;Yeob, So-Jin;Bang, Jeong Hwan;Lee, Yong Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.154-163
    • /
    • 2021
  • This study was carried out to identify the factors affecting the distribution of suitable habitats for Geranium carolinianum, which was naturalized in South Korea, and to predict the changes of distribution in the future. We collected occurrence data of G. carolinianum at 68 sites in South Korea, and applied the MaxEnt model under climate change scenarios (SSP2-4.5, and SSP5-8.5). Precipitation seasonality (bio15), mean temperature of warmest quarter (bio10), and mean temperature of driest quarter (bio09) had high contribution for potential distribution of G. carolinianum. According to climate change scenarios, high suitable habitats of G. carolinianum occupied 6.43% of the land of South Korea in historical period (1981~2010), and 92.60% under SSP2-4.5, and 98.36% undr SSP5-8.5 in far future (2071~2100).

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin (기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로)

  • Dae Eop Lee;Min Seok Kim;Hyun Ju Oh
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.107-117
    • /
    • 2024
  • The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.

Prediction of Changes in the Potential Distribution of a Waterfront Alien Plant, Paspalum distichum var. indutum, under Climate Change in the Korean Peninsula (한반도에서 기후변화에 따른 수변 외래식물인 털물참새피의 분포 변화 예측)

  • Cho, Kang-Hyun;Lee, Seung Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.206-215
    • /
    • 2015
  • Predicting the changes in the potential distribution of invasive alien plants under climate change is an important and challenging task for the conservation of biodiversity and management of the ecosystems in streams and reservoirs. This study explored the effects of climate change on the potential future distribution of Paspalum distichum var. indutum in the Korean Peninsula. P. distichum var. indutum is an invasive grass species that has a profound economic and environmental impact in the waterfronts of freshwater ecosystems. The Maxent model was used to estimate the potential distribution of P. distichum var. indutum under current and future climates. A total of nineteen climatic variables of Worldclim 1.4 were used as current climatic data and future climatic data predicted by HadGEM2-AO with both RCP 2.6 and RCP 8.5 scenarios for 2050. The predicted current distribution of P. distichum var. indutum was almost matched with actual positioning data. Major environmental variables contributing to the potential distribution were precipitation of the warmest quarter, annual mean temperature and mean temperature of the coldest quarter. Our prediction results for 2050 showed an overall reduction in climatic suitability for P. distichum var. indutum in the current distribution area and its expansion to further inland and in a northerly direction. The predictive model used in this study appeared to be powerful for understanding the potential distribution, exploring the effects of climate change on the habitat changes and providing the effective management of the risk of biological invasion by alien plants.