DOI QR코드

DOI QR Code

Impact of IPCC RCP Scenarios on Streamflow and Sediment in the Hoeya River Basin

대표농도경로 (RCP) 시나리오에 따른 회야강 유역의 미래 유출 및 유사 변화 분석

  • Hwang, Chang Su (Oceanographic Observation Division, Korea Hydrographic and Oceanographic Administration) ;
  • Choi, Chul Uong (Spatial Information Engineering, Pukyong National University) ;
  • Choi, Ji Sun (Spatial Information Engineering, Pukyong National University)
  • 황창수 (국립해양조사원 해양관측과) ;
  • 최철웅 (부경대학교 공간정보시스템공학과) ;
  • 최지선 (부경대학교 공간정보시스템공학과)
  • Received : 2014.06.11
  • Accepted : 2014.08.29
  • Published : 2014.09.30

Abstract

This study is analyze future climate and land cover change affects behaviors for amount of streamflow and sediment discharge within basin. We used the climate forecast data in RCP 4.5 and 8.5 (2011-2100) which is opposite view for each other among RCP scenarios that are discussed for 5th report for IPCC. Land cover map built based on a social economic storyline in RCP 4.5/8.5 using Logistic Regression model. In this study we set three scenarios: one scenario for climate change only, one for land cover change only, one for Last both climate change and land cover change. It simulated amount of streamflow and sediment discharge and the result showed a very definite change in the seasonal variation both of them. For climate change, spring and winter increased the amount of streamflow while summer and fall decreased them. Sediment showed the same pattern of change steamflow. Land cover change increases the amount of streamflow while it decreases the amount of sediment discharge, which is believed to be caused by increase of impervious Surface due to urbanization. Although land cover change less affects the amount of streamflow than climate change, it may maximize problems related to the amount of streamflow caused by climate change. Therefore, it's required to address potential influence from climate change for effective water resource management and prepare suitable measurement for water resource.

본 연구는 미래 기후변화 및 토지피복변화가 유역 내 유출량과 유사량의 거동에 가져올 영향을 분석하는데 목적이 있다. 기상자료는 IPCC 5차 평가보고서를 위해 새롭게 논의된 RCP 시나리오 중 서로 상반되는 4.5 및 8.5 시나리오의 기후전망 (2011~2100년) 이 사용되었으며, 토지피복지도는 RCP 4.5 및 8.5 시나리오의 사회 경제 스토리라인과 로지스틱 회귀모형 (LR)을 이용하여 개발 된 모델에 의해 구축되었다. 기후변화만 고려한 경우, 토지피복변화만 고려한 경우, 기후변화 및 토지피복변화 모두 고려한 경우의 세 가지 시나리오를 설정하고, 각 시나리오에 따른 유출량 및 유사량을 모의한 결과 계절적으로 매우 명확한 변화를 나타내었다. 기후변화는 봄과 겨울에 유출량을 증가시키고 여름과 가을에 유출량을 감소시키는 것으로 나타났으며, 유사량 역시 유출량과 동일한 변화의 양상을 보였다. 토지피복변화는 유출량을 증가시키는 반면 유사량은 감소시키며, 이는 도시화로 인한 불투수 면적의 증가에 의한 것으로 판단된다. 토지피복변화는 기후변화에 비해 유출량에 적은 영향을 끼치나, 기후변화에 의해 초래된 유출량 문제를 더욱 극대화 시킬 수 있다. 따라서 지속적인 수자원 관리를 위하여 기후변화의 잠재적 영향을 파악하고, 토지피복변화에 따른 적절한 수자원 대응 정책 마련이 필요할 것으로 판단된다.

Keywords

References

  1. Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998, Large area hydrologic modeling and assessment Part 1: Model development, Journal of American Water Resources Association, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  2. Bae, D.H., Jung, I.W., Lettenmaier, D.P., 2011, Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea, Journal of Hydrology, Vol. 401, No. 1-2, pp.90-105. https://doi.org/10.1016/j.jhydrol.2011.02.012
  3. Baek, H.J., Cho, C.H., Kwon, W.T., Kim, S.K., Cho, J.Y., Kim, Y.S., 2011, Development strategy for new climate change scenarios based on RCP, Journal of the Korean Society of Climate Change Research, Vol. 2, No. 1, pp. 55-68
  4. Choi, J.Y., Lee, K.J., Lee, J.H., 2005, Turbidity control measures for multipurpose dam through watershed management, Korea Environment Institute.
  5. Faramarzi, M., Abbaspour, K.C., Schulin, R., Yang, H., 2009, Modelling blue and green water resources availability in Iran, Hydrological Processes, Vol. 23, No. 3, pp. 486-501. https://doi.org/10.1002/hyp.7160
  6. Heo, S.G., Kim, N.W., Park, Y.S., Kim, J.G., Kim, S.J., Ahn, J.H., Kim, K.S., Lim, K.J., 2008, Evaluation of effects on SWAT simulated hydrology and sediment behaviors of SWAT watershed delineation using SWAT ArcView GIS extension patch, Journal of Korean Society on Water Environment, Vol. 24, No. 2, pp. 147-155.
  7. IPCC, 2013, Climate Change 2013: The physical science basis, contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change.
  8. Ji U., Kim, T.G., Lee, E.J., Ryoo, K.S., Hwang, M.H., Jang, E.K., 2014, Analysis of sediment discharge by long-term runoff in Nakdong River Watershed using SWAT model, Journal of Environmental Science International, Vol. 23, No. 4, pp. 723-735. https://doi.org/10.5322/JESI.2014.4.723
  9. Kim, J.S. and Choi, C.U., 2013, Impact of changes in climate and land use/land cover change under climate change scenario on streamflow in the basin, Journal of the Korea Society for GeospatIal Information System, Vol. 21, No. 2, pp. 107-116. https://doi.org/10.7319/kogsis.2013.21.2.107
  10. Kim, J.S., Choi, J.S., Choi, C.U., Park, S.Y., 2013, Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea, Science of The Total Environment Vol. 452-453, pp. 181-195. https://doi.org/10.1016/j.scitotenv.2013.02.005
  11. Kim, J.S. and Park, S.Y., 2013a, A prediction and analysis for functional change of ecosystem in South Korea, Journal of the Korean Association of Geographic Information Studies, Vol. 16, No. 2, pp. 114-128. https://doi.org/10.11108/kagis.2013.16.2.114
  12. Kim, J.S. and Park, S.Y., 2013b, Urban growth prediction each administrative district considering social economic development aspect of climate change scenario, Journal of the Korea Society for GeospatIal Information System, Vol. 21, No. 2, pp. 53-62. https://doi.org/10.7319/kogsis.2013.21.2.053
  13. Lee, E.H. and Seo, D.I., 2011, Flow calibration and validation of Daechung Lake Watershed, Korea Using SWAT-CUP, Journal of Korea Water Resources Association, Vol. 44, No. 9, pp. 711-720. https://doi.org/10.3741/JKWRA.2011.44.9.711
  14. Lee, G.S., Kim, J.Y., Ahn, S.R., Sim, J.M., 2010, Analysis of suspended solid of Andong and Imha Basin according to the climate change, Journal of the Korean Association of Geographic Information Studies, Vol. 13, No. 1, pp. 1-15.
  15. Lee, J.M., Kun, D.H., Kim, Y.S., Kim, Y.J., Kang, H.W., Jang, C.H., Lee, G.J., Lim, K.J., 2013, Prediction of SWAT stream flow using only future precipitation data, Journal of Korean Society on Water Environment, Vol. 29, No. 1, pp. 88-96.
  16. Lee, Y.J., Park, G.A., Kim, S.J., 2006, Analysis of landslide hazard area using logistic regression analysis and AHP (Analytical Hierarchy Process) approach, Journal of the Korean Society of Civil Engineers, Vol. 26, No. 5, pp. 861-867.
  17. Nash, J.E. and Sutcliffe, J.E., 1970, River flow forecasting through conceptual models, Part I-A discussion of principles, Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  18. Park, S.Y., 2013, Urban growth prediction under the socio-economic scenarios based on climate change in the South Korea, Ph.D. Thesis, Pukyong National University, Busan, South Korea.
  19. Praskievicz, S. and Chang, H., 2011, Impacts of climate change and urban development on water resources in the Tualatin River Basin, Oregon, Annals of the Association of American Geographers, Vol. 101, No. 2, pp. 249-271. https://doi.org/10.1080/00045608.2010.544934
  20. Shen, Z.Y., Gong, Y.W., Li, Y.H., Hong, Q., Xu, L., Liu, R.M., 2009, A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area, Agricultural Water Management, Vol. 96, No. 10, pp. 1435-1442. https://doi.org/10.1016/j.agwat.2009.04.017
  21. Sloan, P.G., Morre, I.D., Coltharp, G.B., Elgel, J.D., 1983, Modling surface and subsurface stormflow on steeply-sloping forested watersed, Water Resources Institute, Report 142. University of Kentucky, Lexington.
  22. Soil Survey Staff, 1996, National soil survey handbook. title 430-VI, USDA Natural resources conservation service, U.S. government printing office, Washington, D.C.
  23. USDA-SCS (Soil Conservation Service), 1972, National engineering handbook, part 630 hydrology, section 4, chapter 10.
  24. Williams, J.R., 1975, Sediment-yield prediction with universal equation using runoff energy factor, Present and prospective technology for predicting sediment yield and sources, pp. 244-252.
  25. Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., 2011, The representative concentration pathways: an overview. Climatic Change Vol. 109, pp. 5-31. https://doi.org/10.1007/s10584-011-0148-z
  26. Ye, L., Yoon, S.W., Chung, S.W., 2008, Application of SWAT for the estimation of soil loss in the Daecheong Dam Basin, Journal of Korea Water Resources Association, Vol. 41, No. 2, pp. 149-162. https://doi.org/10.3741/JKWRA.2008.41.2.149