DOI QR코드

DOI QR Code

Prediction of Changes in the Potential Distribution of a Waterfront Alien Plant, Paspalum distichum var. indutum, under Climate Change in the Korean Peninsula

한반도에서 기후변화에 따른 수변 외래식물인 털물참새피의 분포 변화 예측

  • Received : 2015.07.01
  • Accepted : 2015.08.31
  • Published : 2015.09.30

Abstract

Predicting the changes in the potential distribution of invasive alien plants under climate change is an important and challenging task for the conservation of biodiversity and management of the ecosystems in streams and reservoirs. This study explored the effects of climate change on the potential future distribution of Paspalum distichum var. indutum in the Korean Peninsula. P. distichum var. indutum is an invasive grass species that has a profound economic and environmental impact in the waterfronts of freshwater ecosystems. The Maxent model was used to estimate the potential distribution of P. distichum var. indutum under current and future climates. A total of nineteen climatic variables of Worldclim 1.4 were used as current climatic data and future climatic data predicted by HadGEM2-AO with both RCP 2.6 and RCP 8.5 scenarios for 2050. The predicted current distribution of P. distichum var. indutum was almost matched with actual positioning data. Major environmental variables contributing to the potential distribution were precipitation of the warmest quarter, annual mean temperature and mean temperature of the coldest quarter. Our prediction results for 2050 showed an overall reduction in climatic suitability for P. distichum var. indutum in the current distribution area and its expansion to further inland and in a northerly direction. The predictive model used in this study appeared to be powerful for understanding the potential distribution, exploring the effects of climate change on the habitat changes and providing the effective management of the risk of biological invasion by alien plants.

기후변화에 따른 침입외래식물의 잠재적 분포지를 예측하는 것은 하천과 저수지에서 생물다양성 보전과 생태적 관리를 위하여 중요하고 해결해야 할 과제이다. 본 연구에서는 한반도에서 털물참새피 (Paspalum distichum var. indutum)의 잠재적 미래 분포에 미치는 기후변화의 영향을 파악하였다. 털물참새피는 담수생태계의 수변에서 심각한 경제적, 환경적 영향을 미치는 침입 초본식물이다. 현재와 미래의 기후에서 털물참새피의 잠재적 분포를 추정하기 위하여 Maxent 모델을 적용하였다. 기후변화의 영향을 파악하기 위하여 현재 기후 자료로서 Worldclim 1.4의 19개 기후 변수를 사용하였고, 미래의 기후 자료로서 RCP 2.6와 RCP 8.5 시나리오에 따라서 HadGEM2- AO에 의하여 예측된 기후 변수를 사용하였다. 예측된 털물참새피의 현재 잠재분포지는 실제 위치 자료와 거의 일치하였다. 이 식물의 잠재 분포에 영향을 미치는 환경 변수는 가장 따뜻한 분기의 강수량, 연평균기온 및 가장 추운 분기의 평균기온이었다. 2050년에 기후변화에 따른 털물참새피의 분포 예측에 의하면 이 식물의 현재 분포지에서는 기후 적합성이 대체로 감소하였고, 이 식물이 보다 내륙과 북쪽으로 분포지가 확대되었다. 본 연구에서 사용한 예측 모델은 잠재적 분포를 이해하고 분포 변화에 미치는 기후변화의 영향을 파악하며 외래식물에 의한 생물적 침입의 위해성을 효과적으로 관리하는데 유용할 것으로 기대된다.

Keywords

References

  1. Allred, K.W. 1982. Paspalum distichum L. var. indutum Shinners (Poaceae). Western North American Naturalist 42: 101-104.
  2. Bradley, B.A., Blumenthal, D.M., Wilcove, D.S. and Ziska, L.H. 2010. Predicting plant invasions in an era of global change. Trends in Ecology and Evolution 25: 310-318. https://doi.org/10.1016/j.tree.2009.12.003
  3. Crossman, N.D., Bryan, B.A. and Cooke, D.A. 2011. An invasive plant and climate change threat index for weed risk management: integrating habitat distribution pattern and dispersal process. Ecological Indicators 11: 183-198. https://doi.org/10.1016/j.ecolind.2008.10.011
  4. Dukes, J.S. and Ziska, L.H. 2014. Introduction. In, Ziska, L.H. and Dukes, J.S. (eds.), Invasive Species and Global Climate Change. CABI, Wallingford, UK. pp. 1-6.
  5. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, K., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlomer, S., von Stechow, C., Zwickel T. and Minx, J.C. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.
  6. GBIF. 2015. The global biodiversity information facility. http://www.gbif.org. Assessed 1 May 2014.
  7. Gurevitch, J. and Padilla, D.K. 2004. Are invasive species a major cause of extinctions? Trends in Ecology and Evolution 19: 470-474. https://doi.org/10.1016/j.tree.2004.07.005
  8. Havel, J.E., Lee, C.E. and Vander Zanden, M.J. 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518-525. https://doi.org/10.1641/0006-3568(2005)055[0518:DRFIIL]2.0.CO;2
  9. Hood, W.G. and Naiman, R.J. 2000. Vulnerability of riparian zones to invasion by exotic vascular plants. Plant Ecology 148: 105-114. https://doi.org/10.1023/A:1009800327334
  10. Jones, C.C. 2012. Challenges in predicting the future distributions of invasive plant species. Forest Ecology and Management 284: 69-77. https://doi.org/10.1016/j.foreco.2012.07.024
  11. Jose, S., Singh, H.P., Batish, D.R. and Kohli, R.K. 2013. Invasive Plant Ecology. CRC Press, London, UK.
  12. KEI. 2009. The Impact of Climate Change on the Ecosystem: The Case of Wetland Plants. Korea Environment Institute, Seoul, Korea. (in Korean)
  13. Kleinbauer, I., Dullinger, S., Peterseil, J. and Essl, F. 2010. Climate change might drive the invasive tree Robinia pseudacacia into nature reserves and endangered habitats. Biological Conservation 143: 382-390. https://doi.org/10.1016/j.biocon.2009.10.024
  14. KNA. 2015. Korea Biodiversity Information System. Korea National Arboretum. http://www.nature.go.kr. Assessed 1 May 2014.
  15. Leishman, M.R. and Gallagher, R.V. 2015. Will there be a shift to alien-dominated vegetation assemblages under climate change? Diversity and Distributions 21: 848-852. https://doi.org/10.1111/ddi.12338
  16. Mesleard, F., Ham, L.T., Boy, V., van Wijck, C. and Grillas, P. 1993. Competition between an introduced and an indigenous species: the case of Paspalum paspalodes (Michx) Schribner and Aeluropus littoralis (Gouan) in the Camargue (southern France). Oecologia 94: 204-209. https://doi.org/10.1007/BF00341318
  17. Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, P., Carter, T.R., Emori, S., Kainuma, M. and Kram, T., Meehl, G.A., Mitchel, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P. and Wilbanks, T. J. 2010. The next generations of scenarios for climate change research and assessment. Nature 463: 747-756. https://doi.org/10.1038/nature08823
  18. NIBR. 2015. Data Base. National Institute of Biological Resources, Incheon, Korea. Personal communication.
  19. NIE. 2014. Monitoring of Invasive Alien Species Designated by the Wildlife Protection Act (I). National Institute of Ecology, Seocheon, Korea. pp. 29-31. (in Korean)
  20. NIER. 2012. Invasive Alien Species. National Institute of Environmental Research, Incheon, Korea. (in Korean)
  21. NIMR. 2012. Global Climate Change Report for a Response of the IPCC 5th Assessment Report: Prospect of Climate Change by RCP 2.6/4.5/6.0/8.5. Jeju-do, Korea. pp. 3-4. (in Korean)
  22. Phillips, S.J. 2013. Maxent Software for Species Habitat Modeling, version 3.3.3k. http://www.cs.princeton.edu/-schapire/maxent/. Assessed 13 October 2014.
  23. Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  24. QGis DT. 2014. Quantum GIS Geographic Information System. http://www.qgis.org. Assessed 26 October 2014.
  25. Qin, Z., DiTommaso, A., Wu, R.S. and Huang, H.Y. 2014. Potential distribution of two Ambrosia species in China under projected climate change. Weed Research 54: 520-531. https://doi.org/10.1111/wre.12100
  26. Richardson, D.M., Holmes, P.M., Esler, K.J., Galatowitsch, S.M., Stromberg, J.C., Kirkman, S.P., Pysek, P. and Hobbs, R.J. 2007. Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity and Distributions 13: 126-139. https://doi.org/10.1111/j.1366-9516.2006.00314.x
  27. Roger, E., Duursma, D.E., Downey, P.O., Gallagher, R.V., Hughes, L., Steel, J., Johnson, S.B. and Leishman, M.R. 2015. A tool to assess potential for alien plant establishment and expansion under climate change. Journal of Environmental Management 159: 121-127. https://doi.org/10.1016/j.jenvman.2015.05.039
  28. Shin, D.H. and Cho, K.-H. 2001. Vegetation structure and distribution of exotic plants with geomorphology and disturbance in the riparian zone of Seunggi Stream, Incheon. Korean Journal of Ecology 24: 273-280.
  29. Smith, S.D., Huxman, T.E., Zitzer, S.F., Charlet, T.N., Housman, D.C., Coleman, J.S., Fenstermaker, L.K., Seeman, J.R. and Nowak, R.S. 2000. Elevated $CO_2$ increases productivity and invasive species success in an arid ecosystem. Nature 408: 79-82. https://doi.org/10.1038/35040544
  30. Stroh, H.G. 2006. Contribution to the ephemeral wetland vegetation along riverbanks and lakeshores of Western Thrace (NE Greece). Tuexenia 26: 353-388.
  31. Swets, J.A. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285-1293. https://doi.org/10.1126/science.3287615
  32. Taylor, S. and Kumar, L. 2013. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: A case study of Lantana camara L. in Queensland, Australia. Journal of Environmental Management 114: 414-422. https://doi.org/10.1016/j.jenvman.2012.10.039
  33. Tererai, F. and Wood, A.R. 2014. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. South African Journal of Botany 95: 152-158. https://doi.org/10.1016/j.sajb.2014.09.001
  34. Wasowicz, P., Przedpelska-Wasowicz, E.M. and Kristinsson, H. 2013. Alien vascular plants in Iceland: Diversity, spatial patterns, temporal trends, and the impact of climate change. Flora-Morphology, Distribution, Functional Ecology of Plants 208: 648-673. https://doi.org/10.1016/j.flora.2013.09.009
  35. Webber, B.L., Yates, C.J., Le Maitre, D.C., Scott, J.K., Kriticos, D.J., Ota, N., McNeill, A., Le Roux, J.J. and Midgley, G.F. 2011. Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Diversity and Distributions 17: 978-1000. https://doi.org/10.1111/j.1472-4642.2011.00811.x
  36. Woodward, F. and Williams, B. 1987. Climate and plant distribution at global and local scales. Vegetatio 69: 189-197. https://doi.org/10.1007/BF00038700
  37. WorldClim. 2014. WorldClim - Global Climate Data. http://www.worldclim.org. Assessed 13 October 2014.
  38. Yang, Y.H., Song, C.K., Park, S.H. and Kim, M.H. 2002. A study on the distribution of naturalized plants of genus Paspalum L. Journal of Subtropical Agriculture and Biotechnology 18: 37-41. (in Korean)
  39. Yasuro, K. 1994. Aquatic Plants of Japan. Bun-ichi Sogo Shuppan, Tokyo, Japan. (in Japanese)

Cited by

  1. Prediction of Potential Distributions of Two Invasive Alien Plants, Paspalum distichum and Ambrosia artemisiifolia, Using Species Distribution Model in Korean Peninsula vol.3, pp.3, 2016, https://doi.org/10.17820/eri.2016.3.3.189
  2. Current Status of Alien Plants in the Reservoir Shoreline in Korea vol.2, pp.4, 2015, https://doi.org/10.17820/eri.2015.2.4.274
  3. 낙동강 하구언 일대의 물참새피군락 분포 현황 vol.50, pp.2, 2017, https://doi.org/10.11614/ksl.2017.50.2.195
  4. 침입외래식물 단풍잎돼지풀(Ambrosia trifida L.)이 식물종다양성과 준위협종 층층둥굴레(Polygonatum stenophyllum Maxim.)의 활력도에 미치는 영향 및 서식지 보전을 위한 관리방안 vol.20, pp.3, 2015, https://doi.org/10.17663/jwr.2018.20.3.249
  5. Multivariate Associations between Environmental Variables and the Invasion of Alien Plants in Floodplain Waterfront Parklands along the Nakdong River vol.62, pp.6, 2015, https://doi.org/10.1007/s12374-019-0222-z
  6. Potential impact of climate change on plant invasion in the Republic of Korea vol.43, pp.4, 2019, https://doi.org/10.1186/s41610-019-0134-3
  7. Prediction of potential habitats and distribution of the marine invasive sea squirt, Herdmania momus vol.38, pp.1, 2015, https://doi.org/10.11626/kjeb.2020.38.1.179
  8. 우리나라 하천 관리에서 생물지형학의 적용과 전망 vol.7, pp.1, 2015, https://doi.org/10.17820/eri.2020.7.1.001
  9. Predicting Impacts of Climate Change on Northward Range Expansion of Invasive Weeds in South Korea vol.10, pp.8, 2015, https://doi.org/10.3390/plants10081604