DOI QR코드

DOI QR Code

Predicting the Potential Distribution of Pinus densiflora and Analyzing the Relationship with Environmental Variable Using MaxEnt Model

MaxEnt 모형을 이용한 소나무 잠재분포 예측 및 환경변수와 관계 분석

  • Cho, NangHyun (Department of Environmetal Science, Kangwon National University) ;
  • Kim, Eun-Sook (Forest Ecology and Climate Change Division, National Institute of Forest Science) ;
  • Lee, Bora (Forest Ecology and Climate Change Division, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Forest Ecology and Climate Change Division, National Institute of Forest Science) ;
  • Kang, Sinkyu (Department of Environmetal Science, Kangwon National University)
  • 조낭현 (강원대학교 환경학과) ;
  • 김은숙 (국립산림과학원 기후변화생태연구과) ;
  • 이보라 (국립산림과학원 기후변화생태연구과) ;
  • 임종환 (국립산림과학원 기후변화생태연구과) ;
  • 강신규 (강원대학교 환경학과)
  • Received : 2019.09.11
  • Accepted : 2020.06.26
  • Published : 2020.06.30

Abstract

Decline of pine forests happens in Korea due to various disturbances such as insect pests, forest fires and extreme climate, which may further continue with ongoing climate change. For conserving and reestablishing pine forests, understanding climate-induced future shifts of pine tree distribution is a critical concern. This study predicts future geographical distribution of Pinus densiflora, using Maximum Entropy Model (MaxEnt). Input data of the model are locations of pine tree stands and their environmental variables such as climate were prepared for the model inputs. Alternative future projections for P. densiflora distribution were conducted with RCP 4.5 and RCP 8.5 climate change scenarios. As results, the future distribution of P. densiflora steadily decreased under both scenarios. In the case of RCP 8.5, the areal reductions amounted to 11.1% and 18.7% in 2050s and 2070s, respectively. In 2070s, P. densiflora mainly remained in Kangwon and Gyeongsang Provinces. Changes in temperature seasonality and warming winter temperature contributed primarily for the decline of P. densiflora., in which altitude also exerted a critical role in determining its future distribution geographic vulnerability. The results of this study highlighted the temporal and spatial contexts of P. densiflora decline in Korea that provides useful ecological information for developing sound management practices of pine forests.

본 연구는 기후변화에 따른 소나무 잠재분포변화 예측 및 환경요인과의 관계를 파악하기 위한 목적으로 수행되었다. 입력자료인 종속변수는 1:5,000 임상도에서 추출한 소나무 출현자료를 사용하였으며, 독립변수는 RCP 시나리오 기후자료 및 임상도, 입지도에서 추출한 기후, 입지, 생육환경자료 등 총 14개의 환경요인 변수를 사용하였다. 이러한 입력자료를 바탕으로 생태적 지위 개념을 기반으로 한 종 분포 모형 중 하나인 MaxEnt (Maximum Entropy Modeling) 모형을 구동하여 미래의 소나무 잠재분포를 예측하였다. 분석결과 training AUC (Area Under Curve)가 0.79로 우수한 수준의 정확도를 보였으며 현존 소나무 분포 자료와 유사한 현재 잠재분포 결과를 보였다. RCP 시나리오를 적용한 결과 소나무 잠재분포지는 시간이 지남에 따라 지속적으로 감소할 것으로 나타났으며 RCP8.5 기준으로 2050년과 2070년에 각각 11.1%, 18.7%의 잠재분포지가 줄어들 것으로 예측되었다. 입력자료의 소나무 잠재분포 판단에 대한 기여도는 계절기온, 고도, 겨울철 기온 등이 높게 나타났다. 본 연구의 결과는 기후변화로 인한 소나무림 보전 및 대책 수립을 위한 기초자료로 활용될 것으로 판단된다.

Keywords

References

  1. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, and E. T. Hogg, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4), 660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  2. Berger, A. L., S. A. D. Pietra, and V. J. D. Pietra, 1996: A maximum entropy approach to natural language processing. Computational Linguistics 22(1), 39-71.
  3. Bertrand, R., J. Lenoir, C. Piedallu, G. Riofrio-Dillon, P. Ruffray, C. Vidal, J.-C. Pierrat, and J.-C. Gegout, 2011: Change in plant community composition lag behind climate warming in lowland forests. Nature 479, 517-520. https://doi.org/10.1038/nature10548
  4. Choi, J., P. S. Lee, and S. H. Lee, 2015: Anticipation of the future suitable cultivation areas for Korean pines in Korean peninsula with climate change. Journal of Korean Society of Environmental Restoration Technology 18(1), 103-113. (in Korea with English abstract) https://doi.org/10.13087/kosert.2015.18.1.103
  5. Chun, J. H., and C.-B. Lee, 2013: Assessing the effects of climate change on the geographic distribution of Pinus densiflora in Korea using ecological niche model. Agricultural and Forest Meteorology 15(4), 219-233. (in Korea with English abstract) https://doi.org/10.5532/KJAFM.2013.15.4.219
  6. Franklin, J., 2009: Mapping species distributions: spatial inference and prediction. Cambridge University Press.
  7. IPCC, 2014: Synthesis Report. Conrtibution of Working Group I, II and III to the Firth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writign Team, R. K. Rachauri, and L. A. Meyer, eds). IPCC, Geneva, Switzerland, 151pp.
  8. Kang, S. K., J.-H. Lim., E. S. Kim, and N. H. Cho, 2016: Modelling analysis of climate and soil depth effects on pine tree dieback in Korea using BIOME-BGC. Korean Journal of Agricultural and Forest Meteorology 18(4), 242-252. (in Korea with English abstract) https://doi.org/10.5532/KJAFM.2016.18.4.242
  9. Kim, D. W., J. C. Park, and D.-H. Jang, 2017a: Analysis of the possibility for drought detection of spring season using SPI and NDVI. Journal of the association of Korean geographers 6(2), 165-174. (in Korea with English abstract) https://doi.org/10.25202/JAKG.6.2.5
  10. Kim, H. G., D.-K. Lee, Y. W. Mo, S. H. Kil, P. Chan, and S. J. Lee, 2013: Prediction of landslides occurrence probability under climate change using MaxEnt model. Journal of Environmental Impact Assessment 22(10), 30-50. (in Korea with English abstract)
  11. Kim, J. B., E. S. Kim, and J.-H. Lim, 2017b: Topographic and meteorological characteristics of pinus densiflora dieback areas in Sogwang-Ri, Uljin. Korean Journal of Agricultural and Forest Meteorology 19(1), 10-18. (in Korea with English abstract) https://doi.org/10.5532/KJAFM.2017.19.1.10
  12. Kim, K. T., and J. S. Park, 2006: Correlation analysis of vegetation index and drought index. Wetlands research 8(1), 49-58. (in Korea with English abstract)
  13. Kim, T.-G., Y. G. Cho, and J.-G. Oh, 2015: Prediction model of pine forests' distribution change according to climate change. Korean Society of Limnology 48(4), 229-237. (in Korea with English abstract)
  14. KEI(Korea Environment Institute), 2001: Climate change impacts assessment and adaptation measures on ecosystem. II - Forest eco-climate model development. 107pp.
  15. KFS(Korea Forest Service), 2016: Survey Report of National pine forest Resources. 9pp.
  16. KFS(Korea Forest Service), 2017: National pine forest monitoring. 1pp.
  17. Kumar, S., J. Graham, A. M. West, and P. H. Evangelista, 2014: Using district-level occurrences in maxent for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture 103, 55-62. https://doi.org/10.1016/j.compag.2014.02.007
  18. Lee, H. W., 2012: Prediction of Spatial Distribution and Forest Carbon Storage on Pinus densiflora and Quercus spp. Stands in Korea using 4th Forest Cover Map and HyTAG Model (Master Dissertation, Korea University, South Korea) (in Korea with English abstract)
  19. Lee, S.-H., P. S.-H. Lee, S. A. Lee, S.-Y. Ji, and J. Choi., 2015: Predicting the changes in cultivation areas of walnut trees (Juglans sinensis) in Korea due to climate change impacts. Korean Journal of Agricultural and Forest Meteorology 17(4), 399-410. (in Korea with English abstract) https://doi.org/10.5532/KJAFM.2015.17.4.399
  20. Lim, J.-H., 2016: Climate change-induced dieback of evergreen conifers in Korea and options for adaptation. Proceedings of 2016 International Climate Change Adaptation Symposium on Forest Management for Enhancing Resilience to Climate Change, Seoul, Korea. 53-76.
  21. Lee, Y.-H., Y.-J. Oh, S.-H. Hong, C.-S. Na, Y.-E. Na, C.-S. Kim, and S.-I. Sohn, 2015: Predicting the suitable habitat of invasive alien plant Conyza bonariensis based on climate change scenarios. Climate Change Research 6(3), 243-248. (in Korea with English abstract) https://doi.org/10.15531/ksccr.2015.6.3.243
  22. Mather, J. R., and G. A. Yoshioka, 1968: The role of climate in the distribution of vegetation. Journal of the Association of American Geographers 58, 29-41. https://doi.org/10.1111/j.1467-8306.1968.tb01634.x
  23. McDowell, N., W. T. Pockman, C. D. Allen, D. D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. Sperry, A. West, D. G. Williams, and E. A. Yepez, 2008: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178, 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
  24. NIFOS(National Institute of Forest Science), 2012: Economic Species (1) Pine tree. 250.
  25. NIFOS(National Institute of Forest Science), 2014: Predicting Changes of Productive Areas for Major Species under Climate Change in Korea.
  26. Phillips, S. J., R. P. Anderson, and R. E. Schapire, 2006: Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  27. Phillips, S. J., and M. Dudik, 2008: Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 1, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  28. Rosas, T., L. Galiano, R. Ogaya, J. Peñuelas, and J. M. Vilalta, 2013: Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought. Frontiers in Plant Science 4, 400pp. https://doi.org/10.3389/fpls.2013.00400
  29. Seo, D. J., C.Y. Oh, K. S. Woo, and J. C. Lee., 2013: A study on ecological niche of Pinus densiflora forests according to the environment factors. Korean Journal of Agricultural and Forest Meteorology 15(3), 153-160. (in Korea with English abstract) https://doi.org/10.5532/KJAFM.2013.15.3.153
  30. Song, W. K., 2015: Habitat analysis of Hyla suweonensis in the breeding season using species distribution modeling. Journal of Korean Society of Environmental Restoration Technology 18(1), 71-82. (in Korea with English abstract) https://doi.org/10.13087/kosert.2015.18.1.71
  31. Stephenson, N., 1990: Climatic control of vegetation distribution: The role of the water balance. The American Naturalist 135(5), 649-670. https://doi.org/10.1086/285067
  32. Thuiller, W., 2003: BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9(10), 1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
  33. Walther, G. R., E. P. Convery, A. Menzel, C. Parmesan, R. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein, 2002: Ecological responses to recent climate change. Nature 416, 389-395. https://doi.org/10.1038/416389a
  34. Zhang, X., M. A. Friedl, C. B. Schaaf, and A. H. Strahler, 2004: Climate controls on vegetation phonological patterns in northern mid- and high latitudes inferred from MODIS data. Journal of Global change biology 10, 1133-1145. https://doi.org/10.1111/j.1529-8817.2003.00784.x