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In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is 
critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in 
NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide 
a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that 
must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of pre-
admission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality 
control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally 
invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority 
of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging 
AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical 
care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these 
new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and 
development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of 
TBI treatment within the NICU.
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INTRODUCTION

Traumatic brain injury (TBI) is one of the leading causes of 

death and disability worldwide, with the estimated, global in-

cidence of 27–69 million cases annually8). TBI can result in a 

range of progressive long-term physical and psychosocial im-

pairments, including difficulties with cognitive abilities such 

as attention and memory, neurological symptoms such as 

headaches and dizziness, neuropsychiatric disorders, and an 

increased likelihood of neurodegenerative diseases later in 
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life120).

TBI can be classified into two types : primary and second-

ary. The former refers to the immediate consequences of the 

initial trauma, and as such, these effects are irreversible. Sec-

ondary brain injury refers to a series of events triggered by 

physiological responses following initial damage that may re-

sult in additional brain injury and worsen patient prognosis81). 

Therefore, the primary objective of TBI management in neu-

rointensive care units (NICUs) is to prevent, evaluate, and 

treat these secondary insults. This involves implementing 

measures such as maintaining sufficient oxygenation and 

blood pressure, controlling intracranial pressure (ICP) and ce-

rebral perfusion pressure (CPP), and providing appropriate 

nutritional support57,121).

Despite major advances in our understanding of TBI, nu-

merous challenges persist in managing this complex and het-

erogeneous condition. One of the primary challenges arises 

from the heterogeneity of injury mechanisms, patient charac-

teristics, and injury severity. As a result, there is a pressing 

need for patient-specific treatments10,74). To determine the 

most suitable treatment strategies, it is essential to take into 

account the degree of TBI severity, specific areas of the brain 

affected, and unique physiological responses. Artificial intelli-

gence (AI) has the potential to play a critical role in meeting 

these needs by providing tools for personalized treatment 

plans and decision support97). Particularly in the management 

of TBI, numerous studies are being conducted, exploring the 

diverse application possibilities of medical AI. It can perform 

tasks such as classification, prediction, and segmentation of 

TBI patients, thereby offering more precise diagnoses and ef-

ficient treatment directions. Table 1 lists some of these studies, 

demonstrating the specific roles AI can play in TBI manage-

ment. This table summarizes various research examples on 

how AI can contribute in phases like initial management, 

NICU management, and neuroprognostication for TBI pa-

tients, thus providing insights into the clinical applicability of 

AI.

AI-enhanced neurocritical care has the potential to signifi-

cantly enhance the treatment outcomes and quality of life for 

patients with TBI. Although AI techniques have rapidly 

gained acceptance within the neurosurgical community87,114), 

the same level of acceptance does not extend to the utilization 

of AI for TBI management. This brief review provides the core 

concepts of machine learning (ML) and an overview of ML 

applications in NICUs with a focus on patients with TBI. It 

further explores the use of real-time AI in the NICU environ-

ment and concludes by investigating the prospective roles of 

generalist medical AI (GMAI) and digital twins (DT) in the 

NICU.

ML FOR NEUROCRITICAL CARE DATA ANALYSIS

Core concepts of ML
ML is a subfield of AI that enables computers to identify 

patterns and rules inherent in data without being explicitly 

programmed87). A key characteristic of ML models is their 

ability to continuously improve their performance through 

experience. Although more recent ML techniques, such as re-

inforcement learning and generative learning, have yielded 

promising results in certain areas (e.g., surgical planning26) 

and generating neuroimages29), etc.), the conventional tasks of 

medical AI have primarily focused on two main approaches : 

unsupervised learning for identifying undefined patterns or 

reducing data dimensionality and supervised learning for 

classification and regression tasks111). While both techniques 

can be used concurrently, the primary application of ML in 

medical fields has been centered around supervised classifica-

tion and regression for image classification and segmentation, 

diagnosis, and prediction of outcome and complications114).

While it is true that most of these ‘conventional’ tasks could 

theoretically be achieved through statistical methods, such 

statistical models rely on specific assumptions regarding data 

distribution, which may not be valid in numerous situa-

tions135). Specifically, if the data have high dimensionality (i.e., 

many variables) and/or if the relationship between data points 

is nonlinear, statistical assumptions are likely to fail. Nonlin-

earity and high dimensionality are common in medical data, 

making ML particularly advantageous. Logistic regression 

(LR), naïve bayes, decision trees, K-nearest neighbors, random 

forest (RF), and support vector machine (SVM) are common-

ly used classification algorithms in the medical field6,11,33,123). 

Recently, the utilization of ML has been increasing in the 

medical field, not only in clinical practice but also in person-

alized treatment71,110). This trend has been further accelerated 

by the emergence of various decision tree variants and deep 

learning technologies9,45,64,69,113,142).
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Role of ML in pre-admission data analysis
It is crucial for patients with TBI to predict the risk factors 

and perform early diagnosis during the prehospitalization 

process34). In addition, it is essential to optimize the triage pro-

cess by appropriately classifying patients based on the severity 

of brain injury for treatment or transportation. In this regard, 

ML may enable a rapid and accurate diagnosis and treatment 

planning for patients with TBI.

The early recognition of TBI is particularly important be-

cause it effectively improves patient outcomes35,134,137). Choi et 

al.19) used pre-hospital information from emergency medical 

service (EMS) providers, such as the EMS ambulance run 

sheet and EMS trauma in-depth registry, to identify the risk 

factors. Through the application of various ML techniques, 

including the elastic net algorithm, which exhibited the best 

performance, we identified that the three most significant 

predictors of TBI-related outcomes were loss of consciousness, 

Glasgow coma scale (GCS) score, and light reflex. In a study 

conducted by Hale et al.41), an artificial neural network (ANN) 

using computed tomography (CT) data was employed to pre-

dict the likelihood of clinically relevant TBI in pediatric pa-

tients aged <18 years who experienced non-penetrating head 

trauma.

Accurately classifying patients with TBI according to their 

trauma severity before or immediately after transfer to the 

emergency room is crucial for efficient early treatment and 

has a significant impact on their prognosis1). Abe et al.1) aimed 

to detect traumatic intracranial hemorrhage (tICH) and dif-

ferentiate patients with tICH from those without tICH using 

information collected by on-site EMS personnel, such as sys-

tolic blood pressure, heart rate, body temperature, and respi-

ratory rate. In the testing set, extreme gradient boosting (XG-

Boost), a variant of decision tree, showed the best predictive 

performance among the various ML algorithms with an area 

under an area under the receiver operating characteristic 

curve (AUC) of 0.80. Moyer et al.85) developed a predictive 

model to identify patients requiring emergency neurosurgery 

among those diagnosed with moderate-to-severe TBI during 

the prehospital assessment process. Fifteen prehospital predic-

tors, including the GCS, initial systolic blood pressure, initial 

diastolic blood pressure, and initial oxygen saturation, were 

used. The CatBoost model, another decision tree variant, out-

performed the other models with an AUC of 0.81.

Optimizing surgical timing with ML
Once TBI patients are admitted to the hospital, it is impor-

tant to quickly identify which patients require surgical inter-

vention and to intervene at the right time. ML can contribute 

to this treatment intervention process, helping medical profes-

sionals make better decisions. A number of studies have been 

conducted to classify the severity of patients and identify pa-

tients who need surgical intervention. For instance, Güler et 

al.39) developed a classification model to rapidly evaluate the 

severity of TBI in emergency department admitted patients. 

An ANN model was used to classify the severity of TBI using 

trauma scores, GCS, and electroencephalography (EEG) data. 

The model showed high agreement with the neurologists’ de-

cisions, with an 87% concordance rate. Habibzadeh et al.40) fo-

cused on those with positive initial cranial CT scan results for 

moderate TBI, developing a model to differentiate between 

patients needing neurosurgical intervention and those who do 

not, based on age, gender, GCS, Marshall score, presence of 

hematoma, and midline shift score. The SVM model per-

formed best with an F1 score of 0.83 and an AUC of 0.93. Cur-

rently, TBI patients take follow-up CT scans after initial scans 

to assess intracranial damage progression, leading to concerns 

over unnecessary radiation exposure. In this context, this re-

search shows potential as an effective decision-making tool for 

predicting intracranial damage and identifying patients in 

need of medical intervention without follow-up CT scans.

ML is not just limited to patient classification, but also plays 

an important role in determining the appropriate time for 

medical intervention according to the individual patient’s sit-

uation47,56,77,124). Some studies explore the general consequences 

of delayed neurosurgical intervention regardless of type or pa-

tient situation of the surgery, while others focus on detailing 

the appropriate time of intervention for specific surgical pro-

cedures and situations. Hanko et al.42) predicted mortality and 

functional outcomes for TBI patients who received primary 

decompressive craniectomy (DC) treatment, considering a va-

riety of variables including medical records, clinical symp-

toms, and pre- and post-operative conditions. The RF-based 

predictive model used in this study achieved an AUC of 0.811 

for 6-month mortality and 0.873 for outcomes, with surgery 

timing being an important variable. It concluded that early 

implementation of primary DC is essential for effectively re-

lieving ICP and ongoing brain hemorrhage. Similarly, a study 

by Seelig et al.109) examined the outcomes of patients in a coma 
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due to traumatic acute subdural hematoma, investigating vari-

ous variables. It found that delay in surgery was a significant 

factor, particularly noting that patients operated within 4 

hours of injury had a 30% mortality rate, while those operated 

after 4 hours had a mortality rate rising to 90%.

Outcome prediction via ML
Seemingly moderate or minor cases of TBI can rapidly es-

calate to severe TBI, necessitating close surveillance119). The 

generated variables and parameters offer valuable insights into 

prognostic assessments. Indeed, outcome prediction after TBI 

has long been a major topic in neurocritical care72), and the in-

creasing availability of ML techniques has stimulated their ac-

tive incorporation into this topic. Tu et al.128) developed a pre-

dictive model for mortality risk using the Taiwan triage and 

acuity scale and 11 characteristic variables, including age, sex, 

and obesity. The LR algorithm exhibited the best predictive 

performance with an AUC of 0.925. Another study by Tun-

thanathip and Oearsakul129) applied ML to predict functional 

outcomes in pediatric patients with TBI. GCS, hypotension, 

pupillary light reflex, and subarachnoid hemorrhage were es-

tablished as important factors for predicting functional out-

comes. Among the classification algorithms, SVM showed the 

highest performance, with an accuracy of 0.94. Finally, Far-

zaneh et al.32) proposed an interpretable ML-based framework 

for predicting long-term functional outcomes in patients with 

TBI. This study implemented the XGBoost classifier using 18 

electronic health record (EHR) variables. The final model 

achieved an accuracy of 0.7488 on the test set. The advantage 

of this study is that it provides SHAP (SHapley Additive ex-

Planations) contribution, allowing for easier interpretation of 

the model in medical decision-making, particularly for pre-

dicting long-term functional outcomes in patients with TBI.

ML for high-resolution data analysis during  
intensive care

Management of severe TBI often necessitates continuous 

monitoring of various signals such as ICP, arterial pressure, 

and electrocardiography (ECG). The sheer scale, nonlinearity, 

and high dimensionality of the resulting data warrant analysis 

using ML. ML has undoubtedly demonstrated great potential 

for analyzing continuous neuromonitoring data from patients 

with TBI, allowing for the prediction of expected out-

comes116,119,125).

First, EEG is actively used to predict outcomes in patients 

with TBI7,82). For example, Haveman et al.43) used quantitative 

EEG (qEEG) to predict the outcomes of patients with moder-

ate-to-severe TBI 12 months after injury. This was accom-

plished by creating predictive models using an RF classifier 

based on qEEG features, age, and mean arterial blood pressure 

(MAP), which were collected over 7 days post-admission. The 

model showed an AUC of 0.94 on the training set and 0.81 on 

the validation set. Similarly, Noor et al.88) used the absolute 

power spectral density (PSD) in each EEG frequency band to 

predict the outcomes of patients with moderate TBI 12 

months after injury. In this study, Random under-sampling 

boosted trees were used. It was found that the absolute PSD in 

the delta and gamma bands was the best outcome predictor. 

They demonstrated an AUC of 0.97 and 0.95, respectively.

In addition, ICP signal is a valuable tool that can be used to 

predict patient prognosis. Raj et al.96) developed a dynamic 

mortality prediction model for patients with TBI in the NICU 

based on ICP and MAP. Dynamic features related to ICP, 

MAP, CPP, motor response, and eye response were generated. 

These were then used in a LR model to predict the mortality 

rate at 30 days post-injury. The algorithm achieved a maxi-

mum AUC of 0.84, demonstrating superior performance 

compared to IMPACT-TBI118), which is one of the most widely 

accepted static prediction models with an AUC of 0.78. Pi-

mentel et al.93) also attempted to predict the mortality rate of 

patients with TBI by extracting dynamic features from ICP 

and MAP signals. A Gaussian process (GP) framework was 

used to extract dynamic features from physiological signals. 

This method has the advantage of performing well under in-

termittently disrupted monitoring conditions, which are com-

mon in the NICU. By combining GP-based and pressure reac-

tivity index (PRx) features, the ability to predict patient 

outcomes significantly improved, achieving an AUC of 0.76.

REAL-TIME AI APPLICATIONS IN THE NICU  
ENVIRONMENT

In complex and unpredictable environments such as the 

NICU, the speed and accuracy of medical decisions are criti-

cal102,112). The issue of rapidity and accuracy in the clinical de-

cision-making process is further compounded by the sheer 

amount of data generated during neuromonitoring and al-
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tered levels of consciousness. The Clinical decision support 

system (CDSS)86) is intended to improve healthcare delivery by 

enhancing medical decisions with targeted clinical knowledge, 

patient information, and other health information90). AI plays 

a variety of roles in CDSS, such as monitoring and analyzing a 

patient’s condition in real time and predicting future events. 

AI helps clinicians to quickly recognize situations and make 

appropriate medical decisions by analyzing large amounts of 

data in a complex environment.

Signal quality control
False alarms are prevalent in the NICU, adversely impacting 

staff alarm responsiveness, degrading the quality of care, and 

indirectly affecting patients by disrupting their sleep quali-

ty23,25,61,126). Because of the complexity of neurophysiological 

signals, simple filter-based artifact rejection techniques are of-

ten insufficient. Thus, several studies have proposed methods 

to minimize false alarms by identifying and removing arti-

facts that are the main cause of false alarms or by improving 

alarm accuracy4,5,64,66,113,127,132) (Table 2). The primary benefit of 

artifact elimination would be improved signal quality and a 

subsequent reduction of false alarms, and signal quality con-

trol may lead to significant changes in the prognostic values of 

essential neurophysiological signals. For instance, Kim et al.55) 

reported that the association between worse outcomes and the 

prevalence of hypotension significantly increased after the 

elimination of artifacts in arterial pressure.

Event prediction
Intracranial hypertension (IH) is common during the acute 

phase of TBI and can worsen secondary insult95). The predic-

tion of IH could allow rapid intervention and, thus, result in a 

better outcome; hence, it has long been considered an impor-

tant topic in the neurocritical care fields12,63). Schweingruber et 

al.108) reported the performance of long short-term memory 

(LSTM) models in predicting significant events at various 

time intervals ranging from 1 to 24 hours. These models were 

trained using demographic variables and were continuously 

monitored for arterial blood pressure (ABP) and ICP. The 

model showed robust performance even at a distance of 24 

hours, with an AUC of 0.826. However, the most clinically rel-

evant prediction was made 2 hours before the significant 

event, achieving an AUC of 0.953. Additionally, this study de-

fined two phases of IH : ‘long phase IH,’ lasting more than 2 Ta
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hours with IH above 22 mmHg, and ‘short phase IH,’ lasting 

less than 2 hours. The LSTM model predicted the occurrence 

of both situations at a distance of 2 hours, resulting in AUC of 

0.953 and 0.728 for the long and short phases, respectively. 

Similarly, Güiza et al.38) developed a model that could predict 

increased ICP episodes lasting >10 minutes at 30 mmHg, 30 

minutes in advance, using only the dynamic characteristics of 

continuous ICP and MAP. The prediction model was built us-

ing multivariate LR and a GP, achieving a classification accu-

racy of 77%, sensitivity of 82%, and specificity of 75% on the 

validation set. In addition to predicting simple IH events, Lee 

et al.63) focused on predicting ‘life-threatening’ intracranial 

hypertension (LTH) specifically. In this study, episodes of IH 

were classified as LTH if they were characterized by a PRx ex-

ceeding 0 and a pressure-time dose greater than 5. This study 

aimed to predict whether ongoing IH conditions would esca-

late to LTH within 5 minutes. CatBoost was used to predict 

using ABP and ICP-related parameters. This model achieved 

an AUC of 0.73 for predicting LTH on the test dataset. Fur-

thermore, numerous studies have developed models using 

various variables and algorithms to predict ICP episodes ear-

ly16,52,75,107,136) (Fig. 1). 

Fig. 1. A visual representation of the entire process of the ICP related event prediction model. A : Signal data such as ABP, ICP, and ECG, and EHR data 
such as personal information, medical history, and radiology reports are collected from patients during their hospitalization. B : Before using the 
collected data as model input, preprocessing is required. Signal data is filtered according to predefined ranges and segmented into windows of specific 
sizes. Additionally, considering the quality of signal, noise is removed. Non-signal data from patients undergoes processes such as encoding, 
normalization, and imputation of missing data, depending on the type of data. C : An appropriate model is selected and trained using the processed ICP-
related signal parameters and patient health-related parameters. D : This model, by utilizing signal data from specific window and preprocessed EHR 
data, can predict life-threatening clinical conditions, such as IH, within a defined time interval. E : In a clinical setting, such predictions can assist 
clinicians in making decisions for early interventions like drug treatment, surgery, and supportive care. ABP : arterial blood pressure, ICP : intracranial 
pressure, ECG : electrocardiogram, EHRs : electronic health records, BMI : body mass index, CT : computed tomography, MRI : magnetic resonance 
imaging, LightGBM : light gradient boosting machine, LSTM : long short term memory, IH : intracranial hypertension, EVD : external ventricular 
drainage, DC : decompressive craniectomy.
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Minimally invasive neuromonitoring
Simple clinical assessments may not detect subtle changes 

in brain physiology or alterations in the neurological status 

that could appear at a later stage115). This is particularly true 

for TBI, where the patient’s condition may rapidly deteriorate, 

necessitating the integration of clinical assessments with other 

neuromonitoring techniques112). Even ICP (and CPP to some 

extent), which has conventionally served as a core measure in 

TBI, has yielded conflicting results concerning its prognostic 

value18,138). Over the past decade, multimodal neuromonitor-

ing has garnered increasing attention. For example, studies 

have shown that integrating brain tissue oxygen tension-based 

treatments with conventional ICP/CPP-oriented protocols 

leads to a better neurological prognosis and lower death 

rates58,99). Cerebral microdialysis can also provide a better un-

derstanding of hypoperfusion and metabolism when comple-

mented by other modalities74). Thus, multimodal neuromoni-

toring provides a more accurate understanding of each patient’s 

individual circumstances and conditions, paving the way for 

the delivery of individualized therapy74). However, most mul-

timodal monitoring techniques are invasive, resulting in a 

range of problems. For example, invasive ICP monitoring us-

ing a ventricular catheter carries the risk of numerous compli-

cations including infection and intracranial hemorrhage31,112). 

Cerebral microdialysis is not an exception to these concerns as 

it has additional problems such as tissue inf lammatory re-

sponse and biofouling115). Therefore, many previous studies 

have investigated neuromonitoring using minimally invasive 

or non-invasive methods3,106,131). In addition, with the develop-

ment of AI, it has become possible to non-invasively acquire 

and analyze accurate signals.

Various technologies spanning fluid dynamics, ophthalmic, 

otic, and electrophysiologic fields have been proposed for non-

invasive ICP monitoring, including magnetic resonance imag-

ing (MRI), transcranial Doppler ultrasound imaging, optic 

nerve sheath diameter assessment, and others. One of the 

most traditional methods for non-invasive ICP estimation is 

the use of cerebral blood flow velocity (CBFV) and ABP48,51,53). 

According to Imaduddin et al.48), a Pseudo-Bayesian model 

was used to estimate ICP using non-invasive measurements 

such as ABP and CBFV. This model showed a mean absolute 

error (MAE) of 0.6 mmHg for mean ICP estimation, com-

pared to measurements taken invasively. Similarly, Kashif et 

al.53) developed a patient-specific model-based algorithm to 

estimate ICP using routinely collected ABP and CBFV signals, 

eliminating the need for calibration. Using 35 hours of data 

from 37 TBI patients, the model achieved ICP estimates with a 

MAE of 1.6 mmHg and standard deviation of 7.6 mmHg. The 

best performance of the model was a sensitivity of 90%, a 

specificity of 80%, and an AUC of 0.88, indicating improved 

accuracy and reduced variability compared to previous stud-

ies89). Recently, attempts have been made to estimate the ICP 

using ECG. In 2021, Sadrawi et al.105) conducted a study using 

ECG and a U-Net-based deep convolutional autoencoder sys-

tem to noninvasively estimate the mean ICP. The mean ICP 

evaluation had an MAE of 2.404±0.043 mmHg, and Pearson’s 

linear correlation coefficient was 0.89. Although the results 

were inferior to those of previous studies that estimated ICP 

using CBFV and ABP, they are still valuable because they use 

completely non-invasive ECG signals.

Unfortunately, there are a number of challenges to applying 

those noninvasive methods in clinical practice. Almost all re-

view articles on this topic have concluded that it is impossible to 

estimate ICP noninvasively in all situations, for all patients, and 

over a long period of time without calibration31,59,94,100,103,141). For 

instance, CBFV not only exhibits high intra- and inter-user 

variability but is also significantly affected by other physiologi-

cal changes such as medications, and autoregulation. These fac-

tors compromise the reliability of CBFV as a source signal, fur-

thermore, making it challenging for long-term continuous use. 

Additionally, other non-invasive ICP monitoring measures also 

have distinct limitations such as insufficient validation, inabili-

ty for continuous monitoring, poor signal quality, variations 

due to different operator expertise, and inter-observer variabil-

ity. For example, neurological pupillary index measurement us-

ing pupillometry has currently attracted much attention in re-

search and clinical practice17,49,91), but there is still controversy 

about its suitability for continuous monitoring, accuracy in re-

flecting changes in ICP, and precision in estimating ICP70,101,117).

Despite these limitations, noninvasive methods of measur-

ing ICP can be a viable and attractive alternative for patients 

who are not amenable to invasive monitoring. Continuous im-

provements and validations are being made in non-invasive 

methods, and particularly, the development of multimodal 

non-invasive neuromonitoring technologies that integrate var-

ious methods is expected to significantly reduce existing limi-

tations. The advancement of such technologies will mark an 

important turning point in non-invasive ICP measurement.
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AI-ENHANCED NEUROCRITICAL CARE IN THE 
NEAR FUTURE

In neurocritical care, clinical decisions require careful con-

sideration of the vast amount of information generated by 

neuromonitoring and patient management. In this endeavor, 

several decision support AI applications have been proposed; 

at present, AI applications have been designed and utilized for 

relatively limited tasks such as patient monitoring, event pre-

diction, and prognosis forecasting, that is, simple classification 

tasks130). Furthermore, most, if not all, existing AI applications 

are designed to analyze signals, images, or tabular data sepa-

rately without integration. However, with rapid advancements 

in AI technology, newer and more advanced approaches have 

emerged. GMAI and DT technology are two such examples 

that hold promise for revolutionizing the landscape of neuro-

critical care. Although somewhat conceptual, these technolo-

gies have the potential to significantly enhance the AI capabil-

ities in this field.

Concepts of DT and GMAI
A DT is a virtual replica of a physical system or object and is 

a technological concept for efficiently testing and simulating 

products or processes in a digital environment62,122). In the 

medical field, DT can be used as real-time digital replicates of 

patients to develop effective treatment strategies. Additionally, 

it could be useful for optimizing medical processes and hospi-

tal management strategies21).

The first application of DT in the medical field was the Ar-

chimedes project in 2003, where a DT approach was used and 

validated to model the complex management of diabetes27). 

Later, Lal et al.60) developed a DT model of intensive care unit 

(ICU) patients to predict the therapeutic response during the 

first 24 hours of sepsis and conducted pilot testing in an actual 

ICU. In this study, various technologies such as agent-based 

modeling, discrete event simulation, and Bayesian networks 

were used to visualize major organs, including the nervous 

and cardiovascular systems, and simulate treatment effects. 

The pilot testing of the DT showed a moderate level of agree-

ment (fair level; Cohen’s kappa, 0.41) for the first response and 

a significantly high level of agreement (good level; Cohen’s 

kappa, 0.65) for the second response. In recent years, DT 

models have been developed in other medical fields, such as 

cardiology and endocrinology, to provide tailored treatment 

for patients20,24,30).

The concept of the GMAI stems from the shared limitations 

of existing medical AI models, which are designed to perform 

specific tasks and do not generalize to new tasks or datas-

ets37,44,92). GMAI aims to address the limitations of traditional 

medical AI models and relies on a foundation model pre-

trained on large amounts of data to flexibly perform various 

tasks84). Conceptually, the GMAI can conduct diverse medical 

tasks without altering the trained network, thereby ensuring 

robustness and versatility67). According to Moor et al.84), the 

tremendous potential of the GMAI can support clinical deci-

sion-making by drafting radiology reports considering patient 

history, summarizing real-time patient data, and complex 

electronic health records to predict future patient status or 

compare treatment options. In addition, interactive notetak-

ing would be possible by utilizing the development of voice-

to-text models to draft reports based on conversations with 

clinicians; this advantage of GMAI could also be exploited as 

chatbots for individual patients.

Promises of DT and GMAI in TBI
With DT and GMAI, clinicians may virtually navigate 

treatment options, crafting personalized medical plans and 

rehabilitation programs. Furthermore, patient-friendly chat-

bots and personalized reports can help patients intuitively un-

derstand their own condition, enabling them to participate 

more actively in their healthcare, treatment and recovery pro-

cesses. The vast spectrum of symptoms and outcomes in TBI 

patients, driven by the injury’s cause, location, and severity, 

demands personalized treatment approaches – a long-stand-

ing challenge in this field73,140). This heterogeneity in TBI has 

long been recognized as a significant challenge. By leveraging 

data on a patient’s demographic characteristics, risk factors, 

and injury patterns, a DT model can be built to aid in the es-

tablishment of personalized treatment plans. McIver79) pro-

posed a model that creates patient-specific finite element 

meshes based on patients’ MRI data. The model, by using DT 

technology, reflects the structure and function of an individu-

al’s brain, and can simulate the effects of various types of head 

trauma. In addition, it enables proactive identification and 

prediction of patients who may suffer severe long-term dam-

age from repeated head impacts, contributing to prevention 

and effective management strategies for TBI. Advances in 

GMAI may potentially allow for the expansion of AI’s applica-
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tion beyond tasks such as prediction and classification13,36,84,98). 

For instance, by integrating medical imaging with clinical in-

formation, GMAI can create integrated radiological reports 

that include not only predictive analysis but also recommen-

dations for personalized treatment and surgical plans for cli-

nicians. Based on this information, chatbot services can be 

provided to patients, offering easy-to-understand consulta-

tions and personalized health education materials.

DT and GMAI can also be used to monitor rehabilitation 

status and design personalized rehabilitation programs by 

comprehensively considering a patient’s medical history, cog-

nitive status, and motor skills. For example, Huanxia46) pre-

sented a method to monitor the gait of patients with gait dis-

orders in real time using a powered exoskeleton and DT 

technology. The powered exoskeleton supports the patient’s 

movement, while DT analyzes gait patterns by digitally repli-

cating the patient’s actual physical state. This system is capable 

of providing fall alerts and evaluating the effectiveness of re-

habilitation, thereby aiding clinicians in implementing appro-

priate interventions based on the patient’s condition.

Pitfalls and remaining challenges
The combination of DT and GMAI could offer significant 

benefits to both clinicians and patients by supporting medical 

decision-making at every step and directing personalized care 

effectively. However, despite their tremendous potential, sev-

eral challenges must be addressed to implement and utilize 

these technologies in practice.

Data scale
To develop models that can be utilized for various purposes 

in the medical field, a wide range of diverse and huge datasets 

are needed, as well as standardized specifications for signals, 

devices, and other components to ensure data uniformity. 

Thus, collaboration between different centers, guidelines, and 

unified storage methods for data standardization is necessary. 

Additionally, even when data are available, there are concerns 

about the substantial costs of model training as the size of the 

foundation model for DT and GMAI increases, as well as the 

potential environmental concerns associated with it.

Privacy and security
Medical AI handles sensitive personal information related 

to patient health. Specifically, the DT and GMAI models re-

quire a substantial amount of personal information to achieve 

high performance. DT represents a virtual replica of an indi-

vidual, and security becomes an even more critical issue. 

Hence, relevant data must be collected, stored, and processed 

in a secure and privacy-compliant manner.

Validation
Because of the complexity of the DT and GMAI models, 

validation poses significant challenges. Unlike the current 

task-specific AI models, these models perform diverse tasks, 

making it highly challenging to anticipate all possible scenari-

os. In addition, given that the DT and GMAI models directly 

affect patient health when used in the medical field, the vali-

dation process is especially important. Thus, diverse and pre-

cise validation procedures are required.

Application
Integration of AI into real medical practice, especially in the 

NICU for TBI patients, presents significant challenges. First, 

one of the major challenges for AI applications in clinical set-

tings is the issue of compatibility between software and hard-

ware. An algorithm optimized for a specific system may not 

function properly in another system. For example, an algo-

rithm trained on a particular MRI scanner device may not 

work well on a different brand or model of scanner. Second, 

medical AI is still too immature to function effectively espe-

cially, in complex medical situations such as TBI. The inherent 

learning curve of AI demands a significant amount of data 

and information for actual clinical application; thus, it would 

take some time for AI to gain a sufficient level of clinical pro-

ficiency. While it is crucial to evaluate and validate the perfor-

mance of algorithms, such as accuracy, it is more important to 

validate the compatibility, effectiveness, stability, and other 

related aspects of algorithms when applied in actual clinical 

settings. Such validation necessitates close collaboration be-

tween doctors, computer scientists, and data managers. This 

will give us a deep understanding of the clinical value of med-

ical AI technology. Finally, until all of these medical AI valida-

tion processes are completed, clinicians should avoid over-re-

liance on AI decisions and always keep in mind the possibility 

of errors or misdiagnosis.



J Korean Neurosurg Soc 67 | September 2024

504 https://doi.org/10.3340/jkns.2023.0195

CONCLUSION

The application of AI, particularly ML, and concepts such 

as DT and GMAI hold substantial promise for improving 

neurocritical care for patients with TBI. It has potential across 

a wide range of applications from prognostication, decision 

support, patient specific treatment planning, and even reha-

bilitation. However, although these opportunities are signifi-

cant, challenges remain, including the need for high-quality 

data, privacy concerns, ethical considerations, and further 

validation of these technologies. Despite these hurdles, the fu-

ture of AI in neurocritical care seems bright, and continuous 

research and development in this field is necessary to unlock 

its full potential.
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