Browse > Article
http://dx.doi.org/10.17820/eri.2021.8.3.154

Prediction of the spatial distribution of suitable habitats for Geranium carolinianum under SSP scenarios  

Oh, Young-Ju (Institute for Future Environmental Ecology Co., Ltd.)
Kim, Myung-Hyun (Climate Change Assessment Division, National Institute of Agricultural Science)
Choi, Soon-Kun (Climate Change Assessment Division, National Institute of Agricultural Science)
Kim, Min-Kyeong (Climate Change Assessment Division, National Institute of Agricultural Science)
Eo, Jinu (Climate Change Assessment Division, National Institute of Agricultural Science)
Yeob, So-Jin (Climate Change Assessment Division, National Institute of Agricultural Science)
Bang, Jeong Hwan (Climate Change Assessment Division, National Institute of Agricultural Science)
Lee, Yong Ho (O-jeong-Eco-Resilience Institute)
Publication Information
Ecology and Resilient Infrastructure / v.8, no.3, 2021 , pp. 154-163 More about this Journal
Abstract
This study was carried out to identify the factors affecting the distribution of suitable habitats for Geranium carolinianum, which was naturalized in South Korea, and to predict the changes of distribution in the future. We collected occurrence data of G. carolinianum at 68 sites in South Korea, and applied the MaxEnt model under climate change scenarios (SSP2-4.5, and SSP5-8.5). Precipitation seasonality (bio15), mean temperature of warmest quarter (bio10), and mean temperature of driest quarter (bio09) had high contribution for potential distribution of G. carolinianum. According to climate change scenarios, high suitable habitats of G. carolinianum occupied 6.43% of the land of South Korea in historical period (1981~2010), and 92.60% under SSP2-4.5, and 98.36% undr SSP5-8.5 in far future (2071~2100).
Keywords
Agroecosytem; Climate change; Naturalized plant; MaxEnt; SSPs;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nam, H.K., Song, Y.J., Kwon, S.I., Eo, J., and Kim, M.H. 2018. Potential changes in the distribution of seven agricultural indicator plant species in response to climate change at agroecosystem in South Korea. Korean Journal of Ecology and Environment 51: 221-233. (in Korean)   DOI
2 Park, S.H. 2001. Colored illustrations of naturalized plants of Korea (Appendix). Ilchokak, Seoul, 178pp. (in Korean)
3 Person, R.G., Raxworthy, C.J., Nakamura, M., and Peterson, A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102-117.   DOI
4 Phillips, S.J., Anderson, R.P., and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259.   DOI
5 Pimental, D., Lach, L., Zuniga, R., and Morrison, D. 2000. Environmental and economic costs associated with non-indigenous species in the United States. Bioscience 50: 53-64.   DOI
6 Rockwell-Postel, M., Laginhas, B.B., and Bradley, B.A. 2020. Supporting proactive management in the context of climate change: prioritizing range-shifting invasive plants based on impact. Biological Invasions 22: 2371-2383.   DOI
7 Sambaraja, K.R., Carroll, A.L. Zhu, J., Stahl, K., Moore, R.D., and Aukema, B.H. 2012. Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada. Ecography 3: 211-223.
8 Sharpe, S.M. and Boyd, N.S. 2020. Evaluation of sulfonylurea chemistries for strawberry crop safety and Carolina geranium (Geranium carolinianum) efficacy. Weed Technology 34: 214-219.   DOI
9 Swets, J. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285-1293.   DOI
10 Vila, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarosik, V., Maron, J.L., Pergl, J., Schaffner, U., Sun, Y., and Pysek, P. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14: 702-708.   DOI
11 Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A., and Schwartz, M. D. 2007. Shifting plant phenology in response to global change. Trends in Ecology & Evolution 22(7): 357-365.   DOI
12 Ortega-Huerta M.A., and Peterson, A.T. 2008. Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista Mexicana de Biodiversidad 79: 205-2016.
13 Hejda, M., Pysek, P., and Jarosik, V. 2009. Impacat of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology 97: 393-403.   DOI
14 Aedo, C. 2000. The genus Geranium L. (Geraniaceae) in North America. I. Annual species. Anales del Jardin Botanico de Madrid 58: 39-82.
15 Bradley, B.A., Wilcove, D.S., and Oppenheimer, M. 2010a. Climate change increases risk of plant invasion in the Eastern United States. Biological Invasions 12(6): 1855-1872.   DOI
16 Cho, K.H. and Lee S.H. 2015. Prediction of changes in the potential distribution of a waterfront alien plant, Paspalum distichum var. indutum, under cliamte change in the Korean peninsula. Ecology and Resilient Infrastructure 2: 206-215. (in Korean)   DOI
17 Cousens, R.D., and Mortimer, M. 1995. Dynamics of weed populations. Cambridge University Press, Cambridge.
18 Elith, J., Graham, C.H., Anderson, R.P., et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29(2): 129-151.   DOI
19 Gill, N.S., and Sangermano, F. 2016. Africanized honeybee habitat suitability: a comparison between models for southern Utah and southern California. Applied Geography 76: 14-21.   DOI
20 Fang, Y., Zhang, X., WEi, H., Wang, D., Chen, R., Wang, L., and Gu, W. 2021. Predicting the invasivie trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. Science of The Total Environment 756: 143841.   DOI
21 Hors,t R.K. 2008. Westcott's Plant Disease Handbook, Springer Netherlands. p. 783.
22 Hu, J., and Jiang, Z. 2011. Climate change hastens the conservation urgency of an endangered ungulate. PLoS ONE 6(8): e22873.   DOI
23 Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Marquez, J.R., Gruber, B., Lafourcade, B., Leitao, P.J., Munkemuller, T., McClean, C., Osborne, P.E., Reineking, B., Schroder, B., Skidmore, A.K., Zurell, D., and Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1): 27-46.   DOI
24 Cho, N.H., Kim, E.S., Lee, B., Lim, J.H., and Kang, S.K. 2020. Predicting the potential distribution of Pinus densiflora and analyzing the relationship with environmental variable using MaxEnt model. Korean Journal of Agricultural and Fores Meteorology 22(2): 47-56. (in Korean)   DOI
25 Gama-Arachchige, N.S., Baskin, J.M., Geneve, R.L., and Baskin, C.C. 2011. Acquisition of physical dormancy and ontogeny of the micropyle-water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae). Annals of Botany 108: 51-64.   DOI
26 Biber-Freudenberger, L., Ziemacki, J., Tonnang, H.E., and Borgemeister, C. 2016. Future risks of pest species under changing climatic conditions. Plos One 11(4): e0153237.   DOI
27 Bradley, B.A., Blumenthal, D.M., Wilcove, D.S., and Ziska, L.H. 2010b. Predicting plant invasions in an era of global change. Trends in Ecology & Evolution 25(5): 310-318.   DOI
28 Davidson, A.M., Jennions, M., and Nicotra, A.B. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecological Letters 14: 419-431.   DOI
29 Elith, J., Kearney, M., and Phillips, S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution 1: 330-342.   DOI
30 Elith, J. and Leathwick, J.R. 2009. Species distribution models: Ecological explenation and prediction across space and time. Annual Review of Ecology Evolution & Systematics 40(1): 677-697.   DOI
31 Wilting, A., Cord, A., Hearn, A. J., Hesse, D., Mohamed, A., Traeholdt, C., Cheyne, S.M., Sunarto, S., Jayasilan, M.-A., Ross, J., Shapiro, A.C., Sebastian, A., Dech, S., Breitenmoser, C., Sanderson, J., Duckworth, J.W., and Hofer, H. 2010. Modelling the species distribution of flat-headed cats (Prionailurus planiceps), an endangered South-East Asian small felid. PLoS ONE 5: e9612.   DOI
32 Foden, W., Mace, G., Vie, J.-C., Angulo, A., Butchart, S., DeVantier, L., Dublin, H., Gutsche, A., Stuart, S., and Turak, E. 2008. Species susceptibility to climate change impacts. The 2008 Review of the IUCN Red List of Threatened Species. J.C. Vie, C. Hilton-Taylor and S.N. Stuart eds. Switzerland. IUCN Gland.
33 Hegland, S.J., Nielsen, A., Lazaro, A., Bjerknes, A.-L., and Totland, O. 2009. How does climate warming affect plant-pollinator interaction? Ecological Letters 12: 184-195.   DOI
34 Heikkinen, R.K., Luoto, M., Araujo, M.B., Virkkala, R., Thuiller, W. and Sykes, M. T. 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography 30: 751-777.   DOI
35 Hijiman, R.J., van Etten, J., Cheng, J., Mattiuzzi, M., Summer, M., Greenberg, J.A., and Ghosh, A. 2017. The raster Package: Geographic data analysis and modeling, version 2.6-7.
36 Lee, Y.M., Park, S.H., Jung, S.Y., Oh, S.H., and Yang, J.C. 2011. Study on the current status of naturalized plants in South Korea. Korean Journal of Plant Taxonomy 41(1): 87-101. (in Korean)   DOI
37 Hellmann, J.J., Byers, J.E., Bierwagen, B.G., and Dukes, J.S. 2008. Five potential consequences of climate change for invasive species. Conservation Biology 22: 534-543.   DOI
38 Hernandez, P.A., Graham, C.H., Master, L.L., and Albert, D.L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 5: 773-785.
39 Hoveka, L.N., Bezeng, B.S., Yessoufou, K., Boatwright, J.S., Van der Bank, M. 2016. Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa. South African Journal of Botany 102:33-38.   DOI
40 Jeon, E.S. 1995. Recently naturalized Geranium carolinianum L. and Trifolium dubium Sibth. Bulletin of Korea Plant Conservation Society 34:22-23. (in Korean)
41 Jo, W.S., Kim, H.Y., and Kim, B.J. 2017. Climate change alters diffusion of forest pest:A model study. Journal of the Korean Physical Society 70(1): 108-115.   DOI
42 Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H., and Wilting, A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distribution 19: 1366-1379.   DOI
43 Lee, Y.H., Hong, S.H., Na, C.S., Sohn, S.I., Kim, M.H., Kim, C.S., Oh, Y.J. 2016. Predicting the suitable habitat of Amaranthus viridis based on climate change scenarios by MaxEnt. Korean Journal of Environmental Biology 34(4): 240-245. (in Korean)   DOI
44 Li, Y., Li, M., Li, C., and Liu, Z. 2020. Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 11(3).
45 Liu, X., Zong, T., Li, Y., Zhou, X., and Bai, L. 2018. Effect of environmental factors on seed germination and early seedling emergence of Carolina geranium (Geranium carolinianum). Planta Daninha 36:e018181055.   DOI
46 Morales, N.S., Fernandez, I.C., and Baca-Gonzalez, V. 2017. MaxEnt's parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 5: e3093.   DOI