• Title/Summary/Keyword: Potential biomarkers

Search Result 380, Processing Time 0.03 seconds

Exposure to PAHs and VOCs in Residents near the Shinpyeong·Jangrim Industrial Complex (신평·장림 산단 인근 주민의 PAHs 및 VOCs 노출)

  • Yoon, Mi-Ra;Jo, HyeJeong;Kim, GeunBae;Chang, JunYoung;Lee, Chul-Woo;Lee, Bo-Eun
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.131-143
    • /
    • 2021
  • Objectives: This study aims to investigate the atmospheric concentration of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) and the urinary concentration of biomarkers in residents near the Shinpyeong·Jangrim Industrial Complex to compare them with those of residents in a control area. Methods: Hazardous air pollutants (PAHs and VOCs) were measured in an exposure area (two sites) and a control area (one site). Urine samples were collected from residents near the industrial complex (184 persons) and residents in the control area (181 persons). Multiple linear regression analysis was used to identify which factors affected the concentration of PAHs and VOCs metabolites. Results: The average atmospheric concentration of PAHs in Shinpyeong-dong and Jangrim-dong was 0.45 and 0.59 ppb for pyrene, 0.15 and 0.16 ppb for benzo[a]pyrene, and 0.29 and 0.35 ppb for dibenz[a,h]anthracene. The average atmospheric concentration of VOCs was 1.10 and 0.99 ppb for benzene, 8.22 and 11.30 ppb for toluene, and 1.91 and 3.05 ppb for ethylbenzene, respectively. The concentrations of PAHs and VOCs in residents near the Shinpyeong·Jangrim Industrial Complex were higher than those of residents in the control area. Geometric means of urinary 2-hydroxyfluorene, 1-hydroxypyrene, methylhippuric acid, and mandelic acid concentrations were 0.45, 0.22, 391.51, and 201.36 ㎍/g creatinine, respectively. Those levels were all significantly higher than those in the control area (p<0.05). In addition, as a result of multiple regression analysis, even after adjusting for potential confounding factors such as gender and smoking, the concentration of metabolites in urine was high in residents near the Shinpyeong·Jangrim Industrial Complex. Conclusion: The results of this study show the possibility of human exposure to VOCs in residents near the Shinpyeong·Jangrim Industrial Complex. Therefore, continuous monitoring of the local community is required for the management of environmental pollutant emissions.

Biological Function and Structure of Transposable Elements (이동성 유전인자의 구조 및 생물학적 기능)

  • Kim, So-Won;Kim, Woo Ryung;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1047-1054
    • /
    • 2019
  • Transposable elements (TEs) occupy approximately 45% of the human genome and can enter functional genes randomly. During evolutionary radiation, multiple copies of TEs are produced by duplication events. Those elements contribute to biodiversity and phylogenomics. Most of them are controlled by epigenetic regulation, such as methylation or acetylation. Every species contains their own specific mobile elements, and they are divided into DNA transposons and retrotransposons. Retrotransposons can be divided by the presence of a long terminal repeat (LTR). They show various biological functions, such as promoter, enhancer, exonization, rearrangement, and alternative splicing. Also, they are strongly implicated to genomic instability, causing various diseases. Therefore, they could be used as biomarkers for the diagnosis and prognosis of diseases such as cancers. Recently, it was found that TEs could produce miRNAs, which play roles in gene inhibition through mRNA cleavage or translational repression, binding seed regions of target genes. Studies of TE-derived miRNAs offer a potential for the expression of functional genes. Comparative analyses of different types of miRNAs in various species and tissues could be of interest in the fields of evolution and phylogeny. Those events allow us to understand the importance of TEs in relation to biological roles and various diseases.

Inflammation and Oxidative Stress as related to Airflow Limitation Severity in Retired Miners with Chronic Obstructive Pulmonary Disease (광산 이직근로자의 만성폐쇄성폐질환 기류제한 중증도와 염증 및 산화스트레스)

  • Lee, Jong Seong;Shin, Jae Hoon;Baek, Jin Ee;Jeong, Ji Yeong;Choi, Byung-Soon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.251-258
    • /
    • 2019
  • Objective: Chronic obstructive pulmonary disease(COPD) is characterized by persistent airflow limitations associated with chronic inflammatory response due to noxious particles or gases in the lung. Inflammation and oxidative stress are associated with COPD. The aim of this study was to evaluate the relationship among inflammation, oxidative stress, and airflow limitation severity in retired miners with COPD. Methods: The levels of serum high-sensitivity C-reactive protein(hsCRP) as a biomarker for inflammation, degree of reactive oxygen metabolites(dROMs) and biological antioxidants potential(BAP) in plasma as biomarkers for oxidative stress were measured in 211 male subjects with COPD. Degree of airflow limitation severity as determined by spirometry was divided into three grades grouped according to the classification of the Global Initiatives for Obstructive Lung Disease(GOLD)(1, mild; 2, moderate; $3{\leq}$, severe or more) using a fixed ratio, post- bronchodilator $FEV_1/FVC$ < 0.7. Results: Mean levels of dROMs significantly increased in relation to airflow limitation severity(GOLD 1, 317.8 U.CARR vs. GOLD 2, 320.3 U.CARR vs. GOLD $3{\leq}$, 350.9 U.CARR, p=0.047) and dROMs levels were correlated with serum hsCRP levels(r=0.514, p<0.001). Mean levels of hsCRP were higher in current smokers(non-smoker, 1.47 mg/L vs. smoker, 2.34 mg/L, p=0.006), and tended to increase with degree of airflow limitation severity(p=0.071). Mean levels of BAP were lower in current smokers(non-smoker, $1873{\mu}mol/L$ vs. smoker, $1754{\mu}mol/L$, p=0.006). Conclusions: These results suggest that inflammation and oxidative stress are related to airflow limitation severity in retired miners with COPD, and there was a correlation between inflammation and oxidative stress.

Effect of commercially purified deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents

  • Reddy, Kondreddy Eswar;Kim, Minji;Kim, Ki Hyun;Ji, Sang Yun;Baek, Youlchang;Chun, Ju Lan;Jung, Hyun Jung;Choe, Changyong;Lee, Hyun Jeong;Kim, Minseok;Lee, Sung Dae
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.243-255
    • /
    • 2021
  • Objective: Deoxynivalenol (DON) and zearalenone (ZEN) are mycotoxins that frequently contaminate maize and grain cereals, imposing risks to the health of both humans and animals and leading to economic losses. The gut microbiome has been shown to help combat the effects of such toxins, with certain microorganisms reported to contribute significantly to the detoxification process. Methods: We examined the cecum contents of three different dietary groups of pigs (control, as well as diets contaminated with 8 mg DON/kg feed or 0.8 mg ZEN/kg feed). Bacterial 16S rRNA gene amplicons were acquired from the cecum contents and evaluated by next-generation sequencing. Results: A total of 2,539,288 sequences were generated with ~500 nucleotide read lengths. Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla, occupying more than 96% of all three groups. Lactobacillus, Bacteroides, Megasphaera, and Campylobacter showed potential as biomarkers for each group. Particularly, Lactobacillus and Bacteroides were more abundant in the DON and ZEN groups than in the control. Additionally, 52,414 operational taxonomic units were detected in the three groups; those of Bacteroides, Lactobacillus, Campylobacter, and Prevotella were most dominant and significantly varied between groups. Hence, contamination of feed by DON and ZEN affected the cecum microbiota, while Lactobacillus and Bacteroides were highly abundant and positively influenced the host physiology. Conclusion: Lactobacillus and Bacteroides play key roles in the process of detoxification and improving the immune response. We, therefore, believe that these results may be useful for determining whether disturbances in the intestinal microflora, such as the toxic effects of DON and ZEN, can be treated by modulating the intestinal bacterial flora.

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.

Respiratory Protective Effect of a RML on PM10D-induced Lung Injury Mouse Model (미세먼지 유발 폐기능 손상 동물모델에서 RML의 호흡기 보호 효과)

  • Kim, Soo Hyun;Kim, Min Ju;Shin, Mi-Rae;Roh, Seong-Soo;Kim, Seung Hyung;Park, Hae-Jin
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • Objective : This study is aimed to evaluate the protective effects of Rehmanniae Radix, Mori Folium, and Liriopie Tuber mixture (RML) on lung injury of Particulate matter less than 10 um in diameter and diesel exhaust particles (PM10D) mice model. Methods : To investigate the anti-inflammatory activity of RML, PM10D was diluted in aluminum hydroxide (Alum) in 7-week-old male mice and induced by Intra-Nazal-Tracheal (INT) injection method. Animal experiments were divided into 5 groups. Nor (normal mice), CTL (PM10D-induced mice with the administration of distilled water), DEXA (PM10D-induced mice with the administration of 3 mg/kg Dexamethasone), RML 100 (PM10D-induced mice treated with RML 100 mg/kg weight), and RML 200 (PM10D-induced mice treated with RML 200 mg/kg body weight). After 11 days administration, mice were sacrificed and inflammation-related immune cells in broncho-alveolar lavage fluid (BALF) were analyzed. Inflammation-related biomarkers were also analyzed in blood and lungs. Lung tissue was observed through histological examination. Results : In the PM10D induced model, the PML showed decreases in CXCL-1 and IL-17A in BALF. Expression of inflammatory cytokines and cough-related mRNA genes was significantly decreased in serum and lung tissue. The mixture treatment of RML significantly improved the immune related cells in the serum. In addition, histological observations showed a tendency to decrease the severity of lung injury. Conclusions : Overall, these results confirmed the respiratory protective effect of the RML mixture in a model of lung injury induced by air pollution (PM10+DEP), suggesting that it is a potential treatment for respiratory damage.

Skin elasticity improvement effect of Young persimmon and Heated young persimmon by decreased Advanced glycation end products(AGEs) (떫은감과 포제 떫은감의 최종당화산물 생성 억제를 통한 피부 탄력 개선 효과)

  • Kim, Soo Hyun;Lee, AhReum;Kim, SuJi;Kim, Kyeong Jo;Kwon, Ojun;Choi, Joon Young;Koo, Jin Suk;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.32 no.4
    • /
    • pp.17-24
    • /
    • 2017
  • Objectives : Advanced glycation end products (AGEs) is bind formation of glucose and protein. Acceleration of AGE formation during hyperglycemia is associated with the pathogenesis of diabetic complications and causes kidney and skin damage. The aim of this study was investigated the AGEs inhibitory activity and antioxidant activity of water extracts from young persimmon (YP) and heated young persimmon (HYP). Methods : Paeoniae Radix Alba (YP) is prepared by heating with 30% ethanol. AGEs formation inhibitory activities of YP and HYP measured using bovine serum albumin. To evaluate the protective effects of YP and HYP in diabetic rats induced with streptozotocin (STZ) and methyl glyoxal (MGO), SD rats were distributed into four groups; normal mice (Nor), AGEs-induced rats (Con), AGEs-induced rats treated with 100 mg/kg YP (YP), AGEs-induced rats treated with 100 mg/kg heated YP (HYP) for 3weeks. Heated young persimmon respectively decrease AGEs construction. Results : YP and HYP administration inhibited the biomarkers of AGEs in serum, kidney and skin tissues. AGE-induced rats revealed that the significant decreased collagen however, heat processing methods of young persimmon up regulated inhibits AGEs-induced collagen decrease. The expressions of AGEs were decreased in YP and HYP treated group compared with the control group in tissues. It specifies that HYP has potential to serve as a positive regulator of via AGEs path way. Conclusion : It has proposed that may have an improvement effect on diabetic complications, heated young persimmon has AGEs inhibitory excellent activities and antioxidant effect.

Trends in Saliva Research and Biomedical Clinical Applications (타액 연구의 최신 지견과 임상 응용)

  • Soyoung Park;Eungyung Lee;Jonghyun Shin;Taesung Jeong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Function of salivary gland and saliva composition can be an indicator of individual's health status. Recently, saliva has been thought to have a high potential for usage in the biomedical field to diagnose, evaluate, and prevent systemic health due to the technological advances in analyzing and detecting small elements such as immunological and metabolic products, viruses, microorganisms, hormones in saliva. As a diagnostic specimen, saliva has some useful advantages compared to serum. Because of simple non-invasive method, saliva sampling is quite comfort for the patient, and it doesn't require specialists to collect samples. The possibility of infection during the collection process is also low. For this reason, proteins, genetic materials, and various biomarkers in saliva are actively being utilized on studying stress, microbiomics, genetics, and epigenetics. For the research on collecting big data related to systemic health, the needs on biobank has been focused. Regeneration of salivary gland based on tissue engineering has been also on advancement. However, there are still many issues to be solved, such as the standardization of sample collection, storage, and usage. This review focuses on the recent trends in the field of saliva research and highlight the future perspectives in biomedical and other applications.

Liver Protective Effect of the Co-treatment of Rhei Radix et Rhizoma and Silymarin on TAA-induced Liver Injury (대황과 실리마린의 병용투여의 간섬유화 보호 효과)

  • Il-ha Jeong;Sang-woo Ji;Seong-soo Roh
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.3
    • /
    • pp.402-417
    • /
    • 2023
  • Objective: Liver fibrosis is a highly conserved wound-healing response and the final common pathway of chronic inflammatory injury. This study aimed to evaluate the potential anti-fibrotic effect of the combination of Rhei Radix et Rhizoma water extract (RW) and silymarin in a thioacetamide (TAA)-induced liver fibrosis model. Methods: The liver fibrosis mouse model was established through the intraperitoneal injection of TAA (1 week 100 mg/kg, 2-3 weeks 200 mg/kg, 4-8 weeks 400 mg/kg) three times per week for eight weeks. Animal experiments were conducted in five groups; Normal, Control (TAA-induced liver fibrosis mice), Sily (silymarin 50 mg/kg), RSL (RW 50 mg/kg+silymarin 50 mg/kg), and RSH (RW 100 mg/kg+silymarin 50 mg/kg). Biochemical analyses were measured in serum, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), and ammonia levels. Liver inflammatory cytokines and fibrous biomarkers were measured by Western blot analysis, and liver histopathology was evaluated through tissue staining. Results: A significant decrease in the liver function markers AST and ALT and a reduction in ammonia and total bilirubin were observed in the group treated with RSL and RSH. Measurement of reactive oxygen species and MDA revealed a significant decrease in the RSL and RSH administration group compared to the TAA induction group. The expression of extracellular matrix-related proteins, such as transforming growth factor β1, α-smooth muscle actin, and collagen type I alpha 1, was likewise significantly decreased. All drug-administered groups had increased matrix metalloproteinase-9 but a decreasing tissue inhibitor of matrix metalloproteinase-1. RSL and RSH exerted a significant upregulation of NADPH oxidase 2, p22phox, and p47phox, which are oxidative stress-related factors. Furthermore, pro-inflammatory proteins such as cyclooxygenase 2 and interleukin-1β were markedly suppressed through the inhibition of nuclear factor kappa B activation. Conclusions: The administration of RW and silymarin suppressed the NADPH oxidase factor protein level and showed a tendency to reduce inflammation-related enzymes. These results suggest that the combined administration of RW and silymarin improves acute liver injury induced by TAA.

Synergistic Effect of Hydrogen and 5-Aza on Myogenic Differentiation through the p38 MAPK Signaling Pathway in Adipose-Derived Mesenchymal Stem Cells

  • Wenyong Fei;Erkai Pang;Lei Hou;Jihang Dai;Mingsheng Liu;Xuanqi Wang;Bin Xie;Jingcheng Wang
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.78-92
    • /
    • 2023
  • Background and Objectives: This study aims to clarify the systems underlying regulation and regulatory roles of hydrogen combined with 5-Aza in the myogenic differentiation of adipose mesenchymal stem cells (ADSCs). Methods and Results: In this study, ADSCs acted as an in vitro myogenic differentiating mode. First, the Alamar blue Staining and mitochondrial tracer technique were used to verify whether hydrogen combined with 5-Aza could promote cell proliferation. In addition, this study assessed myogenic differentiating markers (e.g., Myogenin, Mhc and Myod protein expressions) based on the Western blotting assay, analysis on cellular morphological characteristics (e.g., Myotube number, length, diameter and maturation index), RT-PCR (Myod, Myogenin and Mhc mRNA expression) and Immunofluorescence analysis (Desmin, Myosin and 𝛽-actin protein expression). Finally, to verify the mechanism of myogenic differentiation of hydrogen-bound 5-Aza, we performed bioinformatics analysis and Western blot to detect the expression of p-P38 protein. Hydrogen combined with 5-Aza significantly enhanced the proliferation and myogenic differentiation of ADSCs in vitro by increasing the number of single-cell mitochondria and upregulating the expression of myogenic biomarkers such as Myod, Mhc and myotube formation. The expressions of p-P38 was up-regulated by hydrogen combined with 5-Aza. The differentiating ability was suppressed when the cells were cultivated in combination with SB203580 (p38 MAPK signal pathway inhibitor). Conclusions: Hydrogen alleviates the cytotoxicity of 5-Aza and synergistically promotes the myogenic differentiation capacity of adipose stem cells via the p38 MAPK pathway. Thus, the mentioned results present insights into myogenic differentiation and are likely to generate one potential alternative strategy for skeletal muscle related diseases.