Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.9.1047

Biological Function and Structure of Transposable Elements  

Kim, So-Won (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim, Woo Ryung (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.29, no.9, 2019 , pp. 1047-1054 More about this Journal
Abstract
Transposable elements (TEs) occupy approximately 45% of the human genome and can enter functional genes randomly. During evolutionary radiation, multiple copies of TEs are produced by duplication events. Those elements contribute to biodiversity and phylogenomics. Most of them are controlled by epigenetic regulation, such as methylation or acetylation. Every species contains their own specific mobile elements, and they are divided into DNA transposons and retrotransposons. Retrotransposons can be divided by the presence of a long terminal repeat (LTR). They show various biological functions, such as promoter, enhancer, exonization, rearrangement, and alternative splicing. Also, they are strongly implicated to genomic instability, causing various diseases. Therefore, they could be used as biomarkers for the diagnosis and prognosis of diseases such as cancers. Recently, it was found that TEs could produce miRNAs, which play roles in gene inhibition through mRNA cleavage or translational repression, binding seed regions of target genes. Studies of TE-derived miRNAs offer a potential for the expression of functional genes. Comparative analyses of different types of miRNAs in various species and tissues could be of interest in the fields of evolution and phylogeny. Those events allow us to understand the importance of TEs in relation to biological roles and various diseases.
Keywords
Biological function; diseases; genomic instability; MicroRNA; transposable element;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmed, M. and Liang, P. 2012. Transposable elements are a significant contributor to tandem repeats in the human genome. Comp. Funct. Genomics 2012, 1-8.   DOI
2 Ardeljan, D., Taylor, M. S., Ting, D. T. and Burns, K. H. 2017. The human long interspersed element-1 retrotransposon: an emerging biomarker of neoplasia. Clin. Chem. 63, 816-822.   DOI
3 Bekpen, C., Xavier, R. J. and Eichler, E. E. 2010. "Human IRGM gene "to be or not to be". Semin. Immunopathol. 32., 437-444.   DOI
4 Bennett, E. A., Coleman, L. E., Tsui, C., Pittard, W. S. and Devine, S. E. 2004. Natural genetic variation caused by transposable elements in humans. Genetics 168, 933-951.   DOI
5 Bennetzen, J. L. and Wang, H. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant. Biol. 65, 505-530.   DOI
6 Blumenstiel, J. P. 2019. Birth, school, work, death, and resurrection: The life stages and dynamics of transposable element proliferation. Genes (Basel) 10, 1-14.   DOI
7 Boeke, J. D. 1997. LINEs and Alus: the polyA connection. Nat. Genet. 16, 6-7.   DOI
8 Domansky, A. N., Kopantzev, E. P., Snezhkov, E. V., Lebedev, Y. B., Leib-Mosch, C. and Sverdlov, E. D. 2000. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 472, 191-195.   DOI
9 Dupressoir, A., Lavialle, C. and Heidmann, T. 2012. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33, 663-671.   DOI
10 Faustino, N. A. and Cooper, T. A. 2003. Pre-mRNA splicing and human disease. Genes Dev. 17, 419-437.   DOI
11 Feschotte, C. 2008. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397-405.   DOI
12 Furano, A. V. 2000. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog. Nucleic Acid Res. Mol. Biol. 64, 255-294.   DOI
13 Ge, S. X. 2017. Exploratory bioinformatics investigation reveals importance of "junk" DNA in early embryo development. BMC Genomics 18, 1-19.   DOI
14 Gentles, A. J., Wakefield, M. J., Kohany, O., Gu, W., Batzer, M. A., Pollock, D. D. and Jurka, J. 2007. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res. 17, 992-1004.   DOI
15 Gogvadze, E. and Buzdin, A. 2009. Retroelements and their impact on genome evolution and functioning. Cell Mol. Life Sci. 66, 3727-3742.   DOI
16 Guffanti, G., Bartlett, A., Klengel, T., Klengel, C., Hunter, R., Glinsky, G. and Macciardi, F. 2018. Novel bioinformatics approach identifies transcriptional profiles of lineagespecific transposable elements at distinct loci in the human dorsolateral prefrontal cortex. Mol. Biol. Evol. 35, 2435-2453.   DOI
17 Guffanti, G., Gaudi, S., Klengel, T., Fallon, J. H., Mangalam, H., Madduri, R., Rodriguez, A., DeCrescenzo, P., Glovienka, E., Sobell, J., Klengel, C., Pato, M., Ressler, K. J., Pato, C. and Macciardi, F. 2016. LINE1 insertions as a genomic risk factor for schizophrenia: preliminary evidence from an affected family. Am. J Med. Genet. B Neuropsychiatr. Genet. 171, 534-545.   DOI
18 Han, K., Lee, J., Meyer, T. J., Wang, J., Sen, S. K., Srikanta, D., Liang, P. and Batzer, M. A. 2007. Alu recombinationmediated structural deletions in the chimpanzee genome. PLoS Genet. 3, 1939-1949.
19 Han, K., Sen, S. K., Wang, J., Callinan, P. A., Lee, J., Cordaux, R., Liang, P. and Batzer, M. A. 2005. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res. 33, 4040-4052.   DOI
20 Henssen, A. G., Koche, R., Zhuang, J., Jiang, E., Reed, C., Eisenberg, A., Still, E., MacArthur, I. C., Rodriguez-Fos, E., Gonzalez, S., Puiggros, M., Blackford, A. N., Mason, C. E., de Stanchina, E., Gönen, M., Emde, A. K., Shah, M., Arora, K., Reeves, C., Socci, N. D., Perlman, E., Antonescu, C. R., Roberts, C. W. M., Steen, H., Mullen, E., Jackson, S. P., Torrents, D., Weng, Z., Armstrong, S. A. and Kentsis, A. 2017. PGBD5 promotes site-specific oncogenic mutations in human tumors. Nat. Genet. 49, 1005-1014.   DOI
21 Horvath, V., Merenciano, M. and Gonzalez, J. 2017. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 33, 832-841.   DOI
22 Huang, C. R., Burns, K. H. and Boeke, J. D. 2012. Active transposition in genomes. Annu. Rev. Genet. 46, 651-675.   DOI
23 Huda, A, Bowen, N. J., Conley, A. B. and Jordan, I. K. 2011. Epigenetic regulation of transposable element derived human gene promoters. Gene 475, 39-48.   DOI
24 Huda, A., Mariño-Ramírez, L. and Jordan, I. K. 2010. Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob. DNA 1, 1-12.   DOI
25 Jung, Y. D., Huh, J. W., Kim, D. S., Kim, Y. J., Ahn, K., Ha, H. S., Lee, J. R., Yi, J. M., Moon, J. W., Kim, T. O., Song, G. A., Han, K. and Kim, H. S. 2011. Quantitative analysis of transcript variants of CHM gene containing LTR12C element in humans. Gene 489, 1-5.   DOI
26 Kaer, K., Branovets, J., Hallikma, A., Nigumann, P. and Speek, M. 2011. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation. PLoS One 6, e26099.   DOI
27 Kajikawa, M. and Okada, N. 2002. LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell 111, 433-444.   DOI
28 Kazazian, H. H. Jr. 2000. Genetics. L1 retrotransposons shape the mammalian genome. Science 289, 1152-1153.   DOI
29 Kazazian, H. H. Jr. 2004. Mobile elements: drivers of genome evolution. Science 303, 1626-1632.   DOI
30 Kidwell, M. G. 1983. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 80, 1655-1659.   DOI
31 Kim, Y. J., Lee, J. and Han, K. 2012. Transposable Elements: No More 'Junk DNA'. Genomics Inform. 10, 226-233.   DOI
32 Kofler, R., Hill, T., Nolte, V., Betancourt, A. J. and Schlotterer, C. 2015. The recent invasion of natural Drosophila simulans populations by the P-element. Proc. Natl. Acad. Sci. USA. 112, 6659-6663.   DOI
33 Lanciano, S. and Mirouze, M. 2018. Transposable elements: all mobile, all different, some stress responsive, some adaptive? Curr. Opin. Genet. Dev. 49, 106-114.   DOI
34 Yuan, Z., Sun, X., Liu, H. and Xie, J. 2011. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One 6, e17666.   DOI
35 Yum, S. Y., Lee, S. J., Kim, H. M., Choi, W. J., Park, J. H., Lee, W. W., Kim, H. S., Kim, H. J., Bae, S. H., Lee, J. H., Moon, J. Y., Lee, J. H., Lee, C. I., Son, B. J., Song, S. H., Ji, S. M., Kim, S. J. and Jang, G. 2016. Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing. Sci. Rep. 6, 1-12.   DOI
36 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitz Hugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C. and Morris, W., International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921.   DOI
37 Lee, H. E., Ayarpadikannan, S. and Kim, H. S. 2015. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes Genet. Syst. 90, 245-257.   DOI
38 Lee, J., Han, K., Meyer, T. J., Kim, H. S. and Batzer, M. A. 2008. Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons. PLoS One 3, e4047.   DOI
39 Legrand, S., Caron, T., Maumus, F., Schvartzman, S., Quadrana, L., Durand, E., Gallina, S., Pauwels, M., Mazoyer, C., Huyghe, L., Colot V., Hanikenne, M. and Castric, V. 2019. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob. DNA 10, 1-17.   DOI
40 Levin, H. L. and Moran, J. V. 2011. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12, 615-627.   DOI
41 Li, W., Lee, M. H., Henderson, L., Tyagi, R., Bachani, M., Steiner, J., Campanac, E., Hoffman, D. A., von Geldern, G., Johnson, K., Maric, D., Morris, H. D., Lentz, M., Pak, K., Mammen, A., Ostrow, L., Rothstein, J. and Nath, A. 2015. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7, 1-13.
42 Linker, S. B., Marchetto, M. C., Narvaiza, I., Denli, A. M. and Gage, F. H. 2017. Examining non-LTR retrotransposons in the context of the evolving primate brain. BMC Biol. 15, 1-8.   DOI
43 Lynch, V. J., Nnamani, M. C., Kapusta, A., Brayer, K., Plaza, S. L., Mazur, E. C., Emera, D., Sheikh, S. Z., Grützner, F., Bauersachs, S., Graf, A., Young, S. L., Lieb, J. D., DeMayo, F. J., Feschotte, C. and Wagner, G. P. 2015. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551-561.   DOI
44 Mager, D. L. and Stoye, J. P. 2015. Mammalian endogenous retroviruses. Microbiol. Spectr. 3, 1-20.
45 Matlik, K., Redik, K. and Speek, M. 2006. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 2006, 1-16.   DOI
46 Mills, R. E., Bennett, E. A., Iskow, R. C., Luttig, C. T., Tsui, C., Pittard, W. S. and Devine, S. E. 2006. Recently mobilized transposons in the human and chimpanzee genomes. Am. J. Hum. Genet. 78, 671-679.   DOI
47 Mouse Genome Sequencing Consortium, Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., Antonarakis, S. E., Attwood, J., Baertsch, R., Bailey, J., Barlow, K., Beck, S., Berry, E., Birren, B., Bloom, T. and Bork, P. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562.   DOI
48 Peccoud, J., Loiseau, V., Cordaux, R. and Gilbert, C. 2017. Massive horizontal transfer of transposable elements in insects. Proc. Natl. Acad. Sci. USA. 114, 4721-4726.   DOI
49 Percharde, M., Lin, C. J., Yin, Y., Guan, J., Peixoto, G. A., Bulut-Karslioglu, A., Biechele, S., Huang, B., Shen, X. and Ramalho-Santos, M. 2018. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174, 391-405. e19.   DOI
50 Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M., Izsvák, Z., Levin, H. L., Macfarlan, T. S., Mager, D. L. and Feschotte, C. 2018. Ten things you should know about transposable elements. Genome Biol. 19, 1-12.   DOI
51 Burns, K. H. 2017. Transposable elements in cancer. Nat. Rev. Cancer 17, 415-424.   DOI
52 Callinan, P. A. and Batzer, M. A. 2006. Retrotransposable elements and human disease. Genome Dyn. 1, 104-115.   DOI
53 Carter, A. B., Salem, A. H., Hedges, D. J., Keegan, C. N., Kimball, B., Walker, J. A., Watkins, W. S., Jorde, L. B. and Batzer, M. A. 2004. Genome-wide analysis of the human Alu Yb-lineage. Hum. Genomics 1, 167-178.   DOI
54 Chiappinelli, K. B., Strissel, P. L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote, N. S., Cope, L. M., Snyder, A., Makarov, V., Budhu, S., Slamon, D. J., Wolchok, J. D., Pardoll, D. M., Beckmann, M. W., Zahnow, C. A., Merghoub, T., Chan, T. A., Baylin, S. B. and Strick, R. 2015. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974-986.   DOI
55 Chien, T. Y., Liu, L. Y. and Charng, Y. C. 2013. Analysis of new functional profiles of protein isoforms yielded by ds exonization in rice. Evol. Bioinform. Online 9, 417-427.   DOI
56 Clayton, E. A., Wang, L., Rishishwar, L., Wang, J., McDonald, J. F. and Jordan, I. K. 2016. Patterns of transposable element expression and insertion in cancer. Front. Mol. Biosci. 3, 1-11.
57 Cordaux, R. and Batzer, M. A. 2009. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691-703.   DOI
58 Dewannieux, M., Esnault, C. and Heidmann, T. 2003. LINEmediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41-48.   DOI
59 Plohl, M., Meštrović, N. and Mravinac, B. 2014. Composition and evolutionary importance of transposable elements in humans and primates. Chromosoma 123, 313-325.   DOI
60 Ramsay, L., Marchetto, M. C., Caron, M., Chen, S. H., Busche, S., Kwan, T., Pastinen, T., Gage, F. H. and Bourque, G. 2017. Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics 18, 1-13.   DOI
61 Rebollo, R., Romanish, M. T. and Mager, D. L. 2012. Transposable elements: An abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet. 46, 21-42.   DOI
62 Reik, W., Dean, W. and Walter, J. 2001. Epigenetic reprogramming in mammalian development. 2001. Science 293, 1089-1093.   DOI
63 Richard, C. and Mark, A. B., 2009. The impact of retrotransposons on human genome evolution Nat. Rev. Genet. 10, 691-703   DOI
64 Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S. Y., Han, H., Liang, G., Jones, P. A., Pugh, T. J., O'Brien, C. and De Carvalho, D. D. 2015. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961-973.   DOI
65 Rowe, H. M. and Trono, D. 2011. Dynamic control of endogenous retroviruses during development. Virology 411, 273-287.   DOI
66 Schmitz, J. and Brosius, J. 2011. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 93, 1928-1934.   DOI
67 Sen, S. K., Han, K., Wang, J., Lee, J., Wang, H., Callinan, P. A., Dyer, M., Cordaux, R., Liang, P. and Batzer, M. A. 2006. Human genomic deletions mediated by recombination between Alu elements. Am. J Hum. Genet. 79, 41-53.   DOI
68 Sundaram, V., Cheng, Y., Ma, Z., Li, D., Xing, X., Edge, P., Snyder, M. P. and Wang, T. 2014. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963-1976.   DOI
69 Tang, Z., Steranka, J. P., Ma, S., Grivainis, M., Rodić, N., Huang, C. R., Shih, I. M., Wang, T. L., Boeke, J. D., Fenyö, D. and Burns, K. H. 2017. Human transposon insertion profiling: analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc. Natl. Acad. Sci. USA. 114, E733-E740.   DOI
70 Tarailo-Graovac, M. and Chen, N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1-4.10.14.
71 Tempel, S. 2012. Using and understanding RepeatMasker. Methods Mol. Biol. 859, 29-51.   DOI
72 Thompson, P. J., Macfarlan, T. S. and Lorincz, M. C. 2016. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol. Cell 62, 766-776.   DOI
73 Tokuyama, M., Kong, Y., Song, E., Jayewickreme, T., Kang, I. and Iwasaki, A. 2018. ERV map analysis reveals genomewide transcription of human endogenous retroviruses. Proc. Natl. Acad. Sci. USA. 115, 12565-12572.   DOI
74 Vitte, C., Fustier, M. A., Alix, K. and Tenaillon, M. I. 2014. The bright side of transposons in crop evolution. Brief. Funct. Genomics 13, 276-295.   DOI
75 Warnefors, M., Pereira, V. and Eyre-Walker, A. 2010. Transposable elements: insertion pattern and impact on gene expression evolution in hominids. Mol. Biol. Evol. 27, 1955-1962.   DOI
76 Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P. and Schulman, A. H. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973-982.   DOI
77 Xing, J., Zhang, Y., Han, K., Salem, A. H., Sen, S. K., Huff, C. D., Zhou, Q., Kirkness, E. F., Levy, S., Batzer, M. A. and Jorde, L. B. 2009. Mobile elements create structural variation: analysis of a complete human genome. Genome Res. 19, 1516-1526.   DOI