Effect of commercially purified deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents |
Reddy, Kondreddy Eswar
(Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration)
Kim, Minji (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) Kim, Ki Hyun (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) Ji, Sang Yun (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) Baek, Youlchang (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) Chun, Ju Lan (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) Jung, Hyun Jung (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) Choe, Changyong (Division of Animal Disease and Health, National Institute of Animal Science, Rural Development Administration) Lee, Hyun Jeong (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) Kim, Minseok (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) Lee, Sung Dae (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) |
1 | Tiemann U, Danicke S. In vivo and in vitro effects of the mycotoxins zearalenone and deoxynivalenol on different non-reproductive and reproductive organs in female pigs: a review. Food Addit Contam 2007;24:306-14. https://doi.org/10.1080/02652030601053626 DOI |
2 | Reddy KE, Jeong JY, Song J, et al. Colon microbiome of pigs fed diet contaminated with commercial purified deoxynivalenol and zearalenone. Toxins 2018;10:347. https://doi.org/10.3390/toxins10090347 DOI |
3 | Robert H, Payros D, Pinton P, Theodorou V, Mercier-Bonin M, Oswald IP. Impact of mycotoxins on the intestine: are mucus and microbiota new targets? J Toxicol Environ Health B 2017;20:249-75. https://doi.org/10.1080/10937404.2017.1326071 DOI |
4 | Przybylska-Gornowicz B, Tarasiuk M, Lewczuk B, et al. The effects of low doses of two Fusarium toxins, zearalenone and deoxynivalenol, on the pig jejunum. A light and electron microscopic study. Toxins 2015;7:4684-705. https://doi.org/10.3390/toxins7114684 DOI |
5 | Liew WPP, Mohd-Redzwan S. Mycotoxin: its impact on gut health and microbiota. Front Cell Infect Microbiol 2018;8:60. https://doi.org/10.3389/fcimb.2018.00060 DOI |
6 | Valeriano VD, Parungao-Balolong MM, Kang DK. In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J Appl Microbiol 2014;117:485-97. https://doi.org/10.1111/jam.12539 DOI |
7 | Giang HH, Viet TQ, Ogle B, Lindberg JE. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria. Livest Sci 2010;129:95-103. https://doi.org/10.1016/j.livsci.2010.01.010 DOI |
8 | Marin DE, Taranu I, Grosu H. Microorganisms involved in the decontamination of trichotecens, mycotoxins produced by Fusarium fungi. Arch Zootech 2011;14:5-24. |
9 | Franco TS, Garcia S, Hirooka EY, Ono YS, dos Santos JS. Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. J Appl Microbiol 2011;111:739-48. https://doi.org/10.1111/j.1365-2672.2011.05074.x DOI |
10 | Committee on Nutrient Requirements of Swine, National Research Council. Nutrition requirements of swine. 11th ed. Washington, DC, USA: National Academies Press; 2012. https://doi.org/10.17226/13298 |
11 | Reddy KE, Jeong JY, Lee Y, et al. Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets. Asian-Australas J Anim Sci 2018;31;595-606. https://doi.org/10.5713/ajas.17.0466 DOI |
12 | Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004;36:808-12. https://doi.org/10.2144/04365ST04 DOI |
13 | Tan H, Zhai Q, Chen W. Investigations of Bacteroides spp. towards next-generation probiotics. Food Res Int 2019;116:637-44. https://doi.org/10.1016/j.foodres.2018.08.088 DOI |
14 | Yang WC, Hsu TC, Cheng KC, Liu JR. Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microb Cell Fact 2017;16:69. https://doi.org/10.1186/s12934-017-0687-8 DOI |
15 | El-Nezami H, Polychronaki N, Salminen S, Mykkanen H. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative α-zearalenol. Appl Environ Microbiol 2002;68:3545-9. https://doi.org/10.1128/AEM.68.7.3545-3549.2002 DOI |
16 | El-Nezami H, Mykkanen H, Kankaanpaa P, Salminen S, Ahokas J. Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. J Food Prot 2000;63:549-52. https://doi.org/10.4315/0362-028X-63.4.549 DOI |
17 | Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460-1. https://doi.org/10.1093/bioinformatics/btq461 DOI |
18 | Magoc T, Salzberg S. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011;27:2957-63. https://doi.org/10.1093/bioinformatics/btr507 DOI |
19 | Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303 DOI |
20 | DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069-72. https://doi.org/10.1128/AEM.03006-05 DOI |
21 | Hu P, Niu Q, Zhu Y, Shi C, Wang J, Zhu W. Effects of early commercial milk supplement on the mucosal morphology, bacterial community and bacterial metabolites in jejunum of the pre- and post-weaning piglets. Asian-Australas J Anim Sci 2020;33:480-9. https://doi.org/10.5713/ajas.18.0941 DOI |
22 | Piotrowska M, Slizewska K, Nowak A, et al. The effect of experimental fusarium mycotoxicosis on microbiota diversity in porcine ascending colon contents. Toxins 2014;6:2064-81. https://doi.org/10.3390/toxins6072064 DOI |
23 | Li F, Wang J, Huang LB, Chen H, Wang C. Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat. Toxins 2017;9:383. https://doi.org/10.3390/toxins9120383 DOI |
24 | Isaacson R, Kim HB. The intestinal microbiome of the pig. Anim Health Res Rev 2012;13:100-9. https://doi.org/10.1017/S1466252312000084 DOI |
25 | Mateos I, Combes S, Pascal G, et al. Fumonisin-exposure impairs age-related ecological succession of bacterial species in weaned pig gut microbiota. Toxins 2018;10:230. https://doi.org/10.3390/toxins10060230 DOI |
26 | Liu Y. Fatty acids, inflammation and intestinal health in pigs. J Anim Sci Biotechnol 2015;6:41. https://doi.org/10.1186/s40104-015-0040-1 DOI |
27 | Saint-Cyr MJ, Perrin-Guyomard A, Houee P, Rolland JG, Laurentie M. Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats. PLoS One 2013;8:e80578. https://doi.org/10.1371/journal.pone.0080578 DOI |
28 | Correa-Matos NJ, Donovan SM, Isaacson RE, Gaskins HR, White BA, Tappenden KA. Fermentable fiber reduces recovery time and improves intestinal function in piglets following Salmonella typhimurium infection. J Nutr 2003;133:1845-52. https://doi.org/10.1093/jn/133.6.1845 DOI |
29 | Kajihara Y, Yoshikawa S, Cho Y, Ito T, Miyamoto H, Kodama H. Preferential isolation of Megasphaera elsdenii from pig feces. Anaerobe 2017;48:160-4. https://doi.org/10.1016/j.anaerobe.2017.08.013 DOI |
30 | Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M. Campylobacter jejuni-mediated disease pathogenesis: an update. Trans R Soc Trop Med Hyg 2008;102:123-9. https://doi.org/10.1016/j.trstmh.2007.09.019 DOI |
31 | Burrough ER, Arruda BL, Patience JF, Plummer PJ. Alterations in the colonic microbiota of pigs associated with feeding distillers dried grains with solubles. PLoS One 2015;10:e0141337. https://doi.org/10.1371/journal.pone.0141337 DOI |
32 | Gratz SW, Currie V, Richardson AJ, et al. Porcine small and large intestinal microbiota rapidly hydrolyze the masked mycotoxin deoxynivalenol-3-glucoside and release deoxynivalenol in spiked batch cultures in vitro. Appl Environ Microbiol 2018;84:e02106-17. https://doi.org/10.1128/AEM.02106-17 DOI |
33 | Pestka JJ, Smolinski AT. Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B 2005;8:39-69. https://doi.org/10.1080/10937400590889458 DOI |
34 | Marin S, Ramos AJ, Cano-Sancho G, Sanchis, V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 2013;60:218-37. https://doi.org/10.1016/j.fct.2013.07.047 DOI |
35 | Pinton P, Oswald IP. Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins 2014;6:1615-43. https://doi.org/10.3390/toxins6051615 DOI |
36 | Reddy KE, Song J, Lee HJ, et al. Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs. Toxins 2018;10:114. https://doi.org/10.3390/toxins10030114 DOI |
37 | Young LG, McGirr L, Valli VE, Lumsden JH, Lun A. Vomitoxin in corn fed to young pigs. J Anim Sci 1983;57:655-64. https://doi.org/10.2527/jas1983.573655x DOI |
38 | Danicke S, Valenta H, Doll S. On the toxicokinetics and the metabolism of deoxynivalenol (don) in the pig. Arch Anim Nutr 2004;58:169-80. https://doi.org/10.1080/00039420410001667548 DOI |
39 | Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 2002;68:673-90. https://doi.org/10.1128/AEM.68.2.673-690.2002 DOI |
40 | Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Kang DK. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol 2014;60:140-6. https://doi.org/10.2323/jgam.60.140 DOI |
41 | Niu Q, Li P, Hao S, et al. Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci Rep 2015;5:9938. https://doi.org/10.1038/srep09938 DOI |
42 | Goyal N, Rishi P, Shukla G. Lactobacillus rhamnosus GG antagonizes Giardia intestinalis induced oxidative stress and intestinal disaccharidases: an experimental study. World J Microbiol Biotechnol 2013;29:1049-57. https://doi.org/10.1007/s11274-013-1268-6 DOI |
43 | Yang J, Qian K, Wang C, Wu Y. Roles of probiotic lactobacilli inclusion in helping piglets establish healthy intestinal inter-environment for pathogen defense. Probiotics Antimicrob Proteins 2018;10:243-50. https://doi.org/10.1007/s12602-017-9273-y DOI |
44 | Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 2008;74:4985-96. https://doi.org/10.1128/AEM.00753-08 DOI |
45 | Ertekin I, Kizilsimsek M. Effects of lactic acid bacteria inoculation in pre-harvesting period on fermentation and feed quality properties of alfalfa silage. Asian-Australas J Anim Sci 2020;33:245-53. https://doi.org/10.5713/ajas.18.0801 DOI |
46 | Jia T, Sun Z, Gao R, Yu Z. Lactic acid bacterial inoculant effects on the vitamin content of alfalfa and Chinese leymus silage. Asian-Australas J Anim Sci 2019;32:1873-81. https://doi.org/10.5713/ajas.19.0135 DOI |
47 | Nesic K, Stevanovic J, Sinovec Z. Efficacy of mineral and organic adsorbent in alleviating harmful effects of zearalenone on pig blood serum protein status. Vet Glas 2008;62:25-34. https://doi.org/10.2298/VETGL0802025N DOI |
48 | Zinedine A, Soriano JM, Molto JC, Manes J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 2007;45:1-18. https://doi.org/10.1016/j.fct.2006.07.030 DOI |