• Title/Summary/Keyword: Porous surface

Search Result 1,492, Processing Time 0.024 seconds

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications (금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점)

  • Kim, Moon Hyeon;Choi, Sang Ok;Choo, Soo Tae
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.370-378
    • /
    • 2013
  • This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.

Preparation and Characterization of Mesoporous ${\gamma}-Al_2O_3$ Prepared from Kaolinite (카올린나이트로부터 중기공성 ${\gamma}-Al_2O_3$의 제조 및 특성)

  • Lee, Gwang-Hyeon;Go, Hyeong-Sin;Kim, Yun-Seop
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.845-852
    • /
    • 2000
  • Mesoporous ${\gamma}-Al_2O_3$ has been prepared by selective leaching of silica from calcined domestic kaolinite. From XRD and TG-DTA data, it was found that the microstructure of a spinel phase, consisting of ${\gamma}-Al_2O_3$ containing a small mount of amorphous silica, was obtained by calcining kaolinite samples at around $1000^{\circ}C$ for 24h. Porous ${\gamma}-Al_2O_3$ was prepared by selectively dissolving the amorphous silica in KOH solutions of 1~4M at temperatures of $25~90^{\circ}C$ for leaching time of 0.5~4h. In the case of the ${\gamma}-Al_2O_3$ obtained upon KOH treatment of 4M at $90^{\circ}C$ for 1h, it showed a very narrow unimodal pore size distribution, and also formed much mesopore at a diameter of around $40~80{\AA}$. The specific surface area was $250\textrm{m}^2/g$ and the total pore volume was $0.654\textrm{cm}^3/g$.

  • PDF

Synthesis and Characterization of Porous Poly(ε-caprolactone)/Silica Nanocomposites (다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가)

  • Son, Siwon;Choi, Ji-Eun;Cho, Hun;Kang, DaeJun;Lee, Deuk Yong;Kim, Jin-Tae;Jang, Ju-Woong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.323-328
    • /
    • 2015
  • Poly(${\varepsilon}$-caprolactone) (PCL) nanofibers and PCL/silica membranes were synthesized by sol-gel derived electrospinning and casting, respectively. Smooth PCL nanofibers were obtained from the precursor containing N,N-dimethylformamide (DMF). PCL/silica membranes were prepared by varying the tetraethyl orthosilicate (TEOS) contents from 0 to 40 vol% to investigate the effect of silica addition on mechanical properties and cytotoxicity of the membranes. Although the strength of the membranes decreased from 12 to 8 MPa with increasing the silica content, the strength remained almost constant 7 weeks after dipping in phosphate buffered saline solution (PBS). The strength reduction was attributed to the presence of a patterned surface pores and micro-pores present in the walls between pores. The crystal structure of the membranes was orthorhombic and the crystallite size decreased from 57 to 18 nm with increasing the silica content. From the agar overlay test, the PCL/silica membranes exhibited neither deformation and discoloration nor lysis of L-929 fibroblast cells.

Separation of Hydrogen-Nitrogen Gases by PTMSP/PDMS-Borosilicate Composite Membranes (PTMSP/PDMS-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Lee, Suk Ho;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • The PTMSP/PDMS graft copolymer were synthesized from the PTMSP[poly(1-trimethylsilyl-1-propyne)] and the PDMS[poly(dimethylsiloxane)] and then the PTMSP/PDMS-borosilicate composite membranes were prepared by adding the porous borosilicates to the PTMSP/PDMS graft copolymer. The number-average molecular weight (${\bar{M}}_n$) and the weight-average molecular weight (${\bar{M}}_w$) of PTMSP/PDMS graft copolymer were 460,000 and 570,000 respectively, and glass transition temperature ($T_g$) of PTMSP/PDMS graft copolymer appeared at $33.53^{\circ}C$ according to DSC analysis. According to the TGA measurements, the addition of borosilicate to the PTMSP/PDMS graft copolymer leaded the decreased weight loss and the completed weight loss temperature went down. SEM observation showed that borosilicate was dispersed in the PTMSP/PDMS-borosilicate composite membranes with the size of $1{\sim}5{\mu}m$. Gas permeation experiment indicated that the addition of borosilicate to PTMSP/PDMS graft copolymer resulted in the increase in free volume, cavity and porosity resulting in the gradual shift of the mechanism of the gas permeation from solution diffusion to molecular sieving surface diffusion, and Knudsen diffusion. Consequently, the permeability of $H_2$ and $N_2$ increased and selectivity ($H_2/N_2$) decreased as the contents of borosilicate increased.

A Study on the Manufacturing Technique by Scientific Analysis and Reproduction Experiment of Ancient Silver Objects Excavated from Neungnae-ri, Ganghwa Island (강화도 능내리출토 은제유물의 과학적 분석 및 재현실험을 통한 제작기법 연구)

  • Ryu, Dong-Wan;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • For the silver artifacts in the Koryo Dynasty excavated from Neungnae-ri Ganghwa island, the metallographic section analysis and hardness and chemical analysis were conducted. After making samples in the similar ratio of the composition concentration, the changes of the microstructure were checked according to the working method and temperature. The results show that those silver artifacts are Au-Cu alloys with 2 to 6 % of Cu. From the results it is judged that Cu was artificially alloyed with them to keep the proper hardness and identified that they were gilded by the amalgamation process seeing that mercury was included at the guilt layer. Also the porous texture on the surface of them could be formed at over $400^{\circ}C$, therefore, it is assumed the hot working or heat treatment at over $400^{\circ}C$ were performed. In silver artifacts made by the relief and repousse, they have the similar composition analysis to other 7 artifacts but the hardness is lower than pure silver. Consequently from differences in the hardness, it can be inferred that the low hardness of silver artifacts is concerned with manufacturing techniques.

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

Study on Characteristics of Fine Bottom Ash Based Geopolymer Mortar (미분쇄 바텀애시 기반 지오폴리머 모르타르 특성에 관한 연구)

  • Lim, Gwi-Hwan;Lee, Jeong-Bae;Jeong, Hyun-Kyu;Kim, Seong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.418-424
    • /
    • 2016
  • This study is an experimental study on the recycling of bottom ash in coal ash discharged from a thermal power plant. Bottom ash has limited research on recycling because it has more porous and higher water absorption ratio than fly ash. In this paper, the bottom ash was pulverized to a specific surface area of $4,000cm^2/g$ in order to use as a binder, and the flow, compressive strength test and microstructure analysis of the bottom ash based geopolymer mortar were performed. The flow measurement results of the geopolymer mortar showed that the flow rate was improved by increasing mixing water as the molar concentration of activator was increased. Compressive strength increased with increasing curing temperature and molar concentration. Through the microstructure analysis, we could confirm the geopolymer gel produced by the reaction of the condensation polymerization. It is considered that it is possible to make the bottom ash based geopolymer concrete through proper molar concentration of activator and high temperature curing.

A study on the biodegradable novel chitosan nanofiber membrane as a possible tool for guided bone regeneration (키토산 나노 차폐막의 골조직 재생유도 능력에 관한 조직학적 연구)

  • Shin, Seung-Yun;Park, Ho-Nam;Kim, Kyoung-Hwa;Lee, Seung-Jin;Park, Yoon-Jeong;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.543-549
    • /
    • 2004
  • Chitosan has been widely researched as bone substitution materials and membranes in orthopedic/periodontal applications. Chitosan nanofiber membrane was fabricated by chitosan nanofiber using electrospinning technique. The structure of the membrane is nonwoven, three-dimensional, porous, and nanoscale fiber-based matrix. The aim of this study was to evaluate the biocompatibility of chitosan nanofiber membrane and to evaluate its capacity of bone regeneration in rabbit calvarial defect. Ten mm diameter round cranial defects were made and covered by 2 kinds of membranes (Gore-Tex membrane, chitosan nanofiber membrane) in rabbits. Animals were sacrificed at 4 weeks after surgery. Decalcified specimens were prepared and observed by microscope. Chitosan nanofiber membrane maintained its shape and space at 4 weeks. No inflammatory cells were seen on the surface of the membrane. In calvarial defects, new bone bridges were formed at all defect areas and fused to original old bone. No distortion and resorption was observed in the grafted chitosan nanofiber membrane. However bone bridge formation and new bone formation at the center of the defect could not be seen in Gore-Tex membranes. It is concluded that the novel membrane made of chitosan nanofiber by electrospinning technique may be used as a possible tool for guided bone regeneration.

Microwave-Syntheses of Zeolitic Imidazolate Framework Material, ZIF-8 (마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성)

  • Park, Jung-Hwa;Park, Seon-Hye;Jhung, Sung-Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.553-559
    • /
    • 2009
  • One of zeolitic imidazolate framework materials (ZIF), ZIF-8, has been synthesized with microwave irradiation and conventional electric heating at $140{\sim}180^{\circ}C}$. ZIFs are porous crystalline materials and are similar to metal organic framework (MOF) materials because both ZIFs and MOFs are composed of both organic and metallic components. ZIFs are very stable and similar to zeolites because ZIFs have tetrahedral networks. ZIF-8, with a decreased crystal size, can be synthesized rapidly with microwave irradiation. The microwave synthesis of ZIF-8 is completed in 4 h at $140{^{\circ}C}$ and the reaction time is decreased by about 5 times compared with the conventional electric heating. The ZIF-8 obtained by microwave heating has larger surface area and micropore volume compared with the ZIF-8 synthesized with conventional electric heating. It can be confirmed that ZIF-8s show type-I adsorption isotherms, explaining the microporosity of the ZIF-8s. Based on FTIR and TGA results, it can be understood that the ZIF-8s have similar bonding and thermal characteristics irrespective of heating methods such as microwave and conventional heating.

Fog Collection/Removal System Using a Moss Filter (이끼필터를 이용한 안개 포집/제거 시스템)

  • Oh, Sunjong;Park, Minyong;Kim, Wandoo;Lim, Hyuneui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.449-455
    • /
    • 2016
  • Fog causes economic losses in transportation. It also results in health problems when it is combined with air pollutants. Considerable research efforts have focused on developing fog removal systems. However, most systems operate themselves after monitoring the fog. Additionally, continuous energy supply and maintenance are required to retain the fog-removal efficiency of the system. This study included the demonstration of a moss filter (a polyolefin mesh interlaced with moss) as a fog-removal method overcoming the limitations of the fog removal system. Three types of mosses with different surface structures were investigated to elucidate the relation between the moisture absorption rate and the structures. Among the different moss types, Hypopterygium japinicum showed the highest efficiency based on the smallest pore diameter and the largest total pore area. The visibilities with the moss filter and the polyolefin mesh were compared to perform the fog removal tests. The moss filter could provide a cost-effective and eco-friendly fog removal system with sustainability.