Preparation and Characterization of Mesoporous ${\gamma}-Al_2O_3$ Prepared from Kaolinite

카올린나이트로부터 중기공성 ${\gamma}-Al_2O_3$의 제조 및 특성

  • Lee, Gwang-Hyeon (Department of Chemical Eigineering, Yosu National University) ;
  • Go, Hyeong-Sin (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Yun-Seop (Department of Chemical Eigineering, Yosu National University)
  • 이광현 (여수대학교 화학공학과) ;
  • 고형신 (한양대학교 화학공학과) ;
  • 김윤섭 (여수대학교 화학공학과)
  • Published : 2000.12.01

Abstract

Mesoporous ${\gamma}-Al_2O_3$ has been prepared by selective leaching of silica from calcined domestic kaolinite. From XRD and TG-DTA data, it was found that the microstructure of a spinel phase, consisting of ${\gamma}-Al_2O_3$ containing a small mount of amorphous silica, was obtained by calcining kaolinite samples at around $1000^{\circ}C$ for 24h. Porous ${\gamma}-Al_2O_3$ was prepared by selectively dissolving the amorphous silica in KOH solutions of 1~4M at temperatures of $25~90^{\circ}C$ for leaching time of 0.5~4h. In the case of the ${\gamma}-Al_2O_3$ obtained upon KOH treatment of 4M at $90^{\circ}C$ for 1h, it showed a very narrow unimodal pore size distribution, and also formed much mesopore at a diameter of around $40~80{\AA}$. The specific surface area was $250\textrm{m}^2/g$ and the total pore volume was $0.654\textrm{cm}^3/g$.

국내산 kaolinite를 소성한 다음 실리카를 선택적으로 추출하여 중기공성 ${\gamma}-Al_2O_3$를 제조하였다. $1000^{\circ}C$에서 24시간 소성된 kaolinite는 소량의 무정형 실리카와 ${\gamma}-Al_2O_3$으로 이루어진 스피넬 상의 미세구조로 전이되었음을 확인하였다. 다공성 ${\gamma}-Al_2O_3$$25~90^{\circ}C$의 반응온도, 0.5~4h의 추출시간 및 1~8M의 KOH 농도범위에서 무정형 실리카를 선택적으로 용해하여 제조할 수 있었다. $90^{\circ}C$, 1시간 및 4M의 KOH 농도조건에서 얻어진 ${\gamma}-Al_2O_3$는 약 $40~80{\AA}$ 정도의 매우 좁은 하나의 기공크기 분포를 가지고 있었으며, mesopore의 기공이 많이 생성되었다. 비표면적은 $250\textrm{m}^2/g$이고, 총 기공부피는 $0.654\textrm{cm}^3/g$로 나타났다.

Keywords

References

  1. ALCOA Research Laboratories, Technical Paper 19, rev Oxide and Hydroxides of Aluminum K. Wefers;C. Misra
  2. Alumina Science and Technology Handbook Chemicals D.L. Hart
  3. Aluminas for Catalysts, Applied Industrial Catalysis v.3 R.K. Oberlander
  4. Key Engineering Materials v.115 R.B. Bagwell;G.L. Messing
  5. J. Colloid and Interf. Sci. v.150 N. Jovanovic;T. novakovvic;J. Janackovic;A. Terlecki-Baricevic
  6. J. Mat. Sci. v.28 Z. Jaworska-Galas;S. Janiak;W. Mista;J. Wrzyszcz;M. Zawadzkl
  7. J. Kor. Ceram. Soc. v.32 S.Y. Kim;Y.S. Kim
  8. J. Kor. Ceram. Soc. v.33 S.Y. Kim;Y.S. Kim
  9. J. Kor. Ceram. Soc. v.19 no.2 Y.H. Paik;C.K. Lee
  10. J. Kor. Ceram. Soc. v.26 no.1 H.C. Park;W.J. Cho;H.K. Kang;M.M. Son
  11. Microporous and Mesoporous Materials v.21 K. Okata;A. Shimai;T. Takei;S. hayashi;A. Yasumori;K.J.D. MacKenizie
  12. J. Porous Mater v.3 S. Saito;S. Hayashi;A. Yasumori;K. Okada
  13. J. Mater. Chem. v.7 S. Saito;T. Motohashi;S. Hayashi;A. Yasumori;K. Okada
  14. Clay Mineralogy : Structure of the Clay Minerals(2nd ed.) R.E. Grim
  15. Clay Minerals Bull. v.5 no.28 H.W.F. Taylor
  16. J. Am. Chem. Soc. v.69 L.H. Cohan
  17. Microporous Mater. v.1 N.G. Papayannakos;A.M. Thanos;V.E. Kaloidas
  18. J. Jpn. Petrol. Inst. v.27 K. Onuma;H. Kobayashi;M. Suzuki
  19. Appl. Catal. v.21 D.L. Trimm;A. Stainistaus