Browse > Article
http://dx.doi.org/10.7464/ksct.2013.19.4.370

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications  

Kim, Moon Hyeon (Department of Environmental Engineering, Daegu University)
Choi, Sang Ok (Experiment & Research Team, Samsung-BP Chemicals Co. Ltd.)
Choo, Soo Tae (Experiment & Research Team, Samsung-BP Chemicals Co. Ltd.)
Publication Information
Clean Technology / v.19, no.4, 2013 , pp. 370-378 More about this Journal
Abstract
This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.
Keywords
Metal-organic frameworks (MOF); Adsorbents; Pressure swing adsorption (PSA); Zeolites; Adsorptive separation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, K. B., Beaver, M. G., Caram, H. S., and Sircar, S., "Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications," Ind. Eng. Chem. Res., 47, 8048-8062 (2008).   DOI   ScienceOn
2 Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M., and Yaghi, O. M., "Synthesis, Structure and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks," Acc. Chem. Res., 43, 58-67 (2010).   DOI   ScienceOn
3 Rezaei, F., and Webley, P., "Structured Adsorbents in Gas Separation Processes," Sep. Purif. Technol., 70, 243-256 (2010).   DOI   ScienceOn
4 Yang, W. H., and Kim, M. H., "Catalytic Reduction of $N_2O$ by $H_2$ over Well-Characterized Pt Surfaces," Korean J. Chem. Eng., 23, 908-918 (2006).   과학기술학회마을   DOI   ScienceOn
5 Wigley, T. M. L., "The Kyoto Protocol: $CO_2$, $CH_4$ and Climate Implications," Geophys. Res. Lett., 25, 2285-2288 (1998).   DOI   ScienceOn
6 US EPA, "Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011," Report No. EPA 430-R-13-001, April, 2013.
7 UNEP (the United Nations Environment Programme), "The Emissions Gap Report 2012: A UNEP Synthesis Report," November, 2012.
8 ASME, "General Position Statement on Technology and Policy Recommendations and Goals for Reducing Carbon Dioxide Emissions in the Energy Sector," April, 2009.
9 Stockholm Environment Institute, "Issues and Options for Benchmarking Industrial GHG Emissions," June, 2010.
10 Wang, Q., Luo, J., Zhong, Z., and Borgna, A., "$CO_2$ Capture by Solid Adsorbents and Their Applications: Current Status and New Trends," Energy Environ. Sci., 4, 42-55 (2011).   DOI   ScienceOn
11 Yaghi, O. M., Li, G., and Li, H., "Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework," Nature, 378, 703-706 (1995).   DOI   ScienceOn
12 Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe- Romo, F. J., Chae, H. K., O'Keeffe, M., and Yaghi, O. M., "Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks," PNAS, 103, 10186-10191 (2006).   DOI   ScienceOn
13 McBain, J. W., The Sorption of Gases and Vapors by Solids, G. Routledge & Sons, London, 1932, pp. 1-577.
14 Wagner, P., Yoshikawa, M., Lovallo, M., Tsuji, K., Tsapatsis, M., and Davis, M. E., "CIT-5: A High-Silica Zeolite with 14-Ring Pores," Chem. Commun., 2179-2180 (1997).
15 Freyhardt, C.C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., Jr., and Davis, M. E., "A High-Silica Zeolite with a 14-Tetrahedral- Atom Pore Opening," Nature, 381, 295-298 (1996).   DOI
16 Lobo, R. F., Tsapatsis, M., Freyhardt, C. C., Khodabandeh, S., Wagner, P., Chen, C. Y., Balkus, K. J., Jr., Zones, S. I., and Davis, M. E., "Characterization of the Extra-Large-Pore Zeolite UTD-1," J. Am. Chem. Soc., 119, 8474-8484 (1997).   DOI   ScienceOn
17 Loiseau, T., and Ferey, G., "Oxyfluorinated Microporous Compounds: VII. Synthesis and Crystal Structure of ULM-5, a New Fluorinated Gallophosphate $Ga_{16}(PO_4)_{14}(HPO_4)_2(OH)_2F_7$, $[H_3N(CH_2)_6NH_3]_4$, $6H_2O$ with 16-Membered Rings and Both Bonding and Encapsulated F," J. Solid State Chem., 111, 403-415 (1994).   DOI   ScienceOn
18 Huo, Q., Xu, R., Li, S., Ma, Z., Thomas, J. M., and Chippindale, A. M., "Synthesis and Characterization of a Novel Extra Large Ring of Aluminophosphate JDF-20," J. Chem. Soc., Chem. Commun., 875-876 (1992).
19 Prez-Pellitero, J., Amrouche, H., Siperstein, F. R., Pirngruber, G., Nieto-Draghi, C., Chaplais, G., Simon-Masseron, A., Bazer- Bachi, D., Peralta, D., and Bats, N., "Adsorption of $CO_2$, $CH_4$, and $N_2$ on Zeolitic Imidazolate Frameworks: Experiments and Simulations," Chem. Eur. J., 16, 1560-1571 (2010).   DOI   ScienceOn
20 Millward, A. R., and Yaghi, O. M., "Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature," J. Am. Chem. Soc., 127, 17998-17999 (2005).   DOI   ScienceOn
21 Li, J. R., Kuppler, R. J., and Zhou, H. C., "Selective Gas Adsorption and Separation in Metal-Organic Frameworks," Chem. Soc. Rev., 38, 1477-1504 (2009).   DOI   ScienceOn
22 Yang, R. T., Adsorbents: Fundamental and Applications, John Wiley & Sons, Hoboken, 2003, pp. 1-410.
23 Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., and Yaghi, O. M., "Porous, Crystalline, Covalent Organic Frameworks," Science, 310, 1166-1170 (2005).   DOI   ScienceOn
24 El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., Cote, A. P., Taylor, R. E., O'Keeffe, M., and Yaghi, O. M., "Designed Synthesis of 3D Covalent Organic Frameworks," Science, 316, 268-272 (2007).   DOI   ScienceOn
25 Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., and Mirodatos, C., "Natural Gas Treating by Selective Adsorption: Material Science and Chemical Engineering Interplay," Chem. Eng. J., 155, 553-566 (2009).   DOI   ScienceOn
26 Palomino, M., Corma, A., Jorda, J. L., Rey, F., and Valencia, S., "Zeolite Rho: A Highly Selective Adsorbent for $CO_2/CH_4$ Separation Induced by a Structural Phase Modification," Chem. Commun., 48, 215-217 (2012).   DOI   ScienceOn
27 Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H. A., Orpen, G. A., and Williams, I. D., "A Chemically Functionalizable Nanoporous Material $[Cu_3(TMA)_2(H_2O)_3]_n$," Science, 283, 1148-1150 (1999).   DOI   ScienceOn
28 Krishna, R., and van Baten, J. M., "A Comparison of the $CO_2$ Capture Characteristics of Zeolites and Metal-Organic Frameworks," Sep. Purif. Technol., 87, 120-126 (2012).   DOI   ScienceOn
29 Yuan, D., Zhao, D., Sun, D., and Zhou, H. C., "An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity," Angew. Chem. Int. Ed., 49, 5357-5361 (2010).   DOI   ScienceOn
30 Dasgupta, S., Biswas, N., Aarti., Gode, N. G., Divekar, S., Nanoti, A., and Goswami, A. N., "$CO_2$ Recovery from Mixtures with Nitrogen in a Vacuum Swing Adsorber Using Metal Organic Framework Adsorbent: A Comparative Study," Int. J. Greenhouse Gas Control, 7, 225-229 (2012).   DOI   ScienceOn
31 Wang, Q. M., Shen, D., Bulow, M., Lau, M. L., Deng, S., Fitch, F. R., Lemcoff, N. O., and Semanscin, J., "Metallo-Organic Molecular Sieve for Gas Separation and Purification," Micropor. Mesopor. Mater., 55, 217-230 (2002).   DOI   ScienceOn
32 Chowdhury, P., Bikkina, C., Meister, D., Dreisbach, F., and Gumma, S., "Comparison of Adsorption Isotherms on Cu-BTC Metal Organic Frameworks Synthesized from Different Routes," Micropor. Mesopor. Mater., 117, 406-413 (2009).   DOI   ScienceOn
33 Liang, Z., Marshall, M., and Chaffee, A. L., "$CO_2$ Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X)," Energy Fuels, 23, 2785-2789 (2009).   DOI
34 Cheon, Y. E., Park, J., and Suh, M. P., "Selective Gas Adsorption in a Magnesium-Based Metal-Organic Framework," Chem. Commun., 5436-5438 (2009).
35 Llewellyn, P. L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., Weireld, G., Chang, J. S., Hong, D. Y., Hwang, Y. K., Jhung, S. H., and Ferey, G., "High Uptakes of $CO_2$ and $CH_4$ in Mesoporous Metal-Organic Frameworks MIL-100 and MIL-101," Langmuir, 24, 7245-7250 (2008).   DOI   ScienceOn
36 Miller, S. R., Pearce, G. M., Wright, P. A., Bonino, F., Chavan, S., Bordiga, S., Margiolaki, I., Guillou, N., Ferey, G., Bourrelly, S., and Llewellyn, P. L., "Structural Transformations and Adsorption of Fuel-Related Gases of a Structurally Responsive Nickel Phosphonate Metal-Organic Framework, Ni-STA-12," J. Am. Chem. Soc., 130, 15967-15981 (2008).   DOI   ScienceOn
37 Bastin. L., Barcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E., and Chen, B., "A Microporous Metal Organic Framework for Separation of $CO_2/N_2$ and $CO_2/CH_4$ by Fixed-Bed Adsorption," J. Phys. Chem. C, 112, 1575-1581 (2008).   DOI   ScienceOn
38 Llewellyn, P. L., Bourrrelly, S., Serre, C., Filinchuk, Y., and Ferey, G., "How Hydration Drastically Improves Adsorption Selectivity for $CO_2$ over $CH_4$ in the Flexible Chromium Terephthalate MIL-53," Angew. Chem., Int. Ed., 45, 7751-7754 (2006).   DOI   ScienceOn
39 Couck, S., Denayer, J. F. M., Baron, G. V., Remy, T., Gascon, J., and Kapteijn, F., "An Amine-Functionalized MIL-53 Metal Organic Framework with Large Separation Power for $CO_2$ and $CH_4$," J. Am. Chem. Soc., 131, 6326-6327 (2009).   DOI   ScienceOn
40 Comotti, A., Bracco, S., Sozzani, P., Horike, S., Matsuda, R., Chen, J., Takata, M., Kubota, Y., and Kitagawa, S., "Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer," J. Am. Chem. Soc., 130, 13664-13672 (2008).   DOI   ScienceOn
41 Chae, H. K., Siberio-Perez, D. Y., Kim, J., Go, Y. B., Eddaoudi, M., Matzger, A. J., O''Keeffe, M., and Yaghi, O. M., "A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals," Nature, 427, 523-527 (2004).   DOI   ScienceOn
42 Demessence, A., D'Alessandro, D. M., Foo, M. L., and Long, J. R., "Strong $CO_2$ Binding in a Water-Stable, Triazolate-Bridged Metal-Organic Framework Functionalized with Ethylenediamine," J. Am. Chem. Soc., 131, 8784-8785 (2009).   DOI   ScienceOn
43 Banerjee, R., Furukawa, R., Britt, H., Knobler, D., O'Keeffe, C., and Yaghi, O. M., "Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon Dioxide Selective Capture Properties," J. Am. Chem. Soc., 131, 3875-3877 (2009).   DOI   ScienceOn
44 Sircar, S., "Basic Research Needs for Design of Adsorptive Gas Separation Processes," Ind. Eng. Chem. Res., 45, 5435-5448 (2006).   DOI   ScienceOn
45 Yong, Z., Mata, V. G., and Rodrigues, A. E., "Adsorption of Carbon Dioxide on Chemically Modified High Surface Area Carbon-Based Adsorbents at High Temperature," Adsorption, 7, 41-50, (2001).   DOI
46 Siriwardane, R. V., Shen, M. S., Fisher, E. P., and Poston, J. A., "Adsorption of $CO_2$ on Molecular Sieves and Activated Carbon," Energy Fuels, 15, 279-284 (2001).   DOI   ScienceOn
47 McEwen, J., Hayman, J. D., and Yazaydin, A. O., "A Comparative Study of $CO_2$, $CH_4$ and $N_2$ Adsorption in ZIF-8, Zeolite-13X and BPL Activated Carbon," Chem. Phys., 412, 72-76 (2013).   DOI   ScienceOn
48 Jadhav, P. D., Chatti, R. V., Biniwale, R. B., Labhsetwar, N. K., Devotta, S., and Rayalu, S. S., "Monoethanol Amine Modified Zeolite 13X for $CO_2$ Adsorption at Different Temperatures," Energy Fuels, 21, 3555-3559 (2007).   DOI   ScienceOn