Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.2.323

Synthesis and Characterization of Porous Poly(ε-caprolactone)/Silica Nanocomposites  

Son, Siwon (Department of Biomedical/Materials Engineering, Daelim University)
Choi, Ji-Eun (Department of Biomedical/Materials Engineering, Daelim University)
Cho, Hun (Department of Biomedical/Materials Engineering, Daelim University)
Kang, DaeJun (Department of Biomedical/Materials Engineering, Daelim University)
Lee, Deuk Yong (Department of Biomedical/Materials Engineering, Daelim University)
Kim, Jin-Tae (R&D Center, Neobiotech Co., Ltd.)
Jang, Ju-Woong (R&D Laboratory, Cellumed Co., Ltd.)
Publication Information
Polymer(Korea) / v.39, no.2, 2015 , pp. 323-328 More about this Journal
Abstract
Poly(${\varepsilon}$-caprolactone) (PCL) nanofibers and PCL/silica membranes were synthesized by sol-gel derived electrospinning and casting, respectively. Smooth PCL nanofibers were obtained from the precursor containing N,N-dimethylformamide (DMF). PCL/silica membranes were prepared by varying the tetraethyl orthosilicate (TEOS) contents from 0 to 40 vol% to investigate the effect of silica addition on mechanical properties and cytotoxicity of the membranes. Although the strength of the membranes decreased from 12 to 8 MPa with increasing the silica content, the strength remained almost constant 7 weeks after dipping in phosphate buffered saline solution (PBS). The strength reduction was attributed to the presence of a patterned surface pores and micro-pores present in the walls between pores. The crystal structure of the membranes was orthorhombic and the crystallite size decreased from 57 to 18 nm with increasing the silica content. From the agar overlay test, the PCL/silica membranes exhibited neither deformation and discoloration nor lysis of L-929 fibroblast cells.
Keywords
membrane; poly(${\varepsilon}$-caprolactone); silica; pore; cytotoxicity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Z. G. Tang, R. A. Black, J. M. Curran, J. A. Hunt, N. P. Rhodes, and D. F. Williams, Biomater., 25, 4741 (2004).   DOI   ScienceOn
2 D. Y. Lee, J. Kim, J. Park, Y. Kim, I. Lee, M. Lee, and B. Kim, Curr. Appl. Phys., 13, 1301 (2013).   DOI   ScienceOn
3 D. Y. Lee, M. Lee, and N. Cho, Curr. Appl. Phys., 12, 1229 (2012).   DOI   ScienceOn
4 W. J. Kim, Y. M. Shin, J. S. Park, H. J. Gwon, Y. S. Kim, H. Shin, Y. C. Nho, Y. M. Lim, and M. S. Chong, Polymer(Korea), 36, 124 (2012).
5 J. T. Kim, D. Y. Lee, Y. S. Oh, J. W. Bang, C. Hyun, T. Kim, and J.H. Choi, Biomater. Res., 17, 37 (2013).
6 J. Kim, D. Y. Lee, E. Kim, J. Jang, and N. Cho, Tissue Eng. Reg. Med., 11, 32 (2014).
7 J. Kim, D. Y. Lee, T. Kim, Y. Song, and N. Cho, Met. Mater. Int., 20, 555 (2014).   DOI   ScienceOn
8 D. Kim, M. Lee, D. Y. Lee, and J. Han, J. Biomed. Mater. Res. (Appl. Biomater.), 53, 438 (2000).   DOI
9 D.Y. Lee, J. Park, Y. Kim, M. Lee, and N. Cho, Curr. Appl. Phys., 14, 421 (2014).   DOI   ScienceOn
10 M. Hong, Y. H. Kim, D. Ganbat, D. Kim, C. Bae, and D.S. Oh, J. Mater. Sci. - Mater. Med., 25, 1991 (2014).
11 D. S. Oh, Y. H. Kim, D. Ganbat, M. Han, P. Lim, J. Back, F. Y. Lee, and H. Tawfeek, Ceram. Intl., 39, 8401 (2013).   DOI   ScienceOn
12 L. Calandrelli, M. Annunziata, F. D. Ragione, P. Laurienzo, M. Malinconico, and A. Oliva, J. Mater. Sci. - Mater. Med., 21, 2923 (2010).   DOI
13 S. Park, K. Kim, B. Min, and S. Hong, Polymer(Korea), 28, 103 (2004).
14 K. Shin, Y. Koh, W. Choi, and H. Kim, Mater. Lett., 65, 1903 (2011).   DOI   ScienceOn
15 S. Lee, J. Lee, S. Choi, K. Kim, K. Kim, and Y. Lee, Korean Soc. Dent. Mater., 34, 411 (2007).
16 J. P. Jeun, Y. M. Lim, and Y. C. Nho, J. Ind. Eng. Chem., 11, 573 (2005).
17 E. Chen and T. Wu, Polym. Degrad. Stabil., 92, 1009 (2007).   DOI   ScienceOn