Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.123

Separation of Hydrogen-Nitrogen Gases by PTMSP/PDMS-Borosilicate Composite Membranes  

Lee, Suk Ho (Department of Chemistry, Sang Myung University)
Lee, Hyun Kyung (Department of Industrial Chemistry, Sang Myung University)
Publication Information
Membrane Journal / v.25, no.2, 2015 , pp. 123-131 More about this Journal
Abstract
The PTMSP/PDMS graft copolymer were synthesized from the PTMSP[poly(1-trimethylsilyl-1-propyne)] and the PDMS[poly(dimethylsiloxane)] and then the PTMSP/PDMS-borosilicate composite membranes were prepared by adding the porous borosilicates to the PTMSP/PDMS graft copolymer. The number-average molecular weight (${\bar{M}}_n$) and the weight-average molecular weight (${\bar{M}}_w$) of PTMSP/PDMS graft copolymer were 460,000 and 570,000 respectively, and glass transition temperature ($T_g$) of PTMSP/PDMS graft copolymer appeared at $33.53^{\circ}C$ according to DSC analysis. According to the TGA measurements, the addition of borosilicate to the PTMSP/PDMS graft copolymer leaded the decreased weight loss and the completed weight loss temperature went down. SEM observation showed that borosilicate was dispersed in the PTMSP/PDMS-borosilicate composite membranes with the size of $1{\sim}5{\mu}m$. Gas permeation experiment indicated that the addition of borosilicate to PTMSP/PDMS graft copolymer resulted in the increase in free volume, cavity and porosity resulting in the gradual shift of the mechanism of the gas permeation from solution diffusion to molecular sieving surface diffusion, and Knudsen diffusion. Consequently, the permeability of $H_2$ and $N_2$ increased and selectivity ($H_2/N_2$) decreased as the contents of borosilicate increased.
Keywords
PTMSP/PDMS-borosilicate; composite membrane; permeability; selectivity; hydrogen; nitrogen;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 T. Masuda, E. Isobe, T. Higashimura, and K. Takada, "Poly[1-(trimethylsilyl)-1-propyne]: A new high polymer synthesized with transition metal catalysts and characterized by extremely high gas permeability", J. Am. Chem. Soc., 105, 7473 (1983).   DOI
2 T. Nakagawa, T. Saito, S. Asakawa, and Y. Saito, "Polyacetylene derivatives as membranes for gas separation", Gas Sep. Purif., 2, 3 (1988).   DOI
3 W. J. Koros, B. J. Story, S. M. Jordan, K. O'brien, and G. R. Husk, "Material selection considerations for gas separation", Polym. Eng. Sci., 27, 603 (1987).   DOI
4 L. C. Witchey-Lakshmanan, H. B. Hopfenberg, and R. T. Chern, "Sorption and transport of organic vapors in poly[1-(trimethylsilyl)-1-propyne]", J. Membr. Sci., 48, 321 (1990).   DOI
5 T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, "Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures", J. Membr. Sci., 191, 85 (2001).   DOI
6 N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol'skii, "Gas and vapor permeation and sorption in poly(trimethylsilylpropyne)", J. Membr. Sci., 60, 13 (1991).   DOI
7 Y. Ichiraku and S. A. Srern, "An investigation of the high gas permeability of poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 34, 5 (1987).   DOI
8 K. Nagai, S. Kanehashi, S. Tabei, and T. Nakagawa, "Nitrogen permeability and carbon dioxide solubility in poly(1-trimethylsilyl-1-propyne)-based binary substituted polyacetylene blends", J. Membr. Sci., 251, 101 (2005).   DOI
9 T. M. Madkour, "Development of the molecular design rules of ultra-permeable poly[1-(trimethylsilyl)-1-propyne] membranes", Polymer, 41, 7489 (2000).   DOI
10 I. Pinnau and L. G. Toy, "Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 116, 199 (1996).   DOI
11 M. Langsam and L. M. Robeson, "Substituted propyne polymers-part II. Effects of aging on the gas permeability properties of poly[1-(trimethylsilyl)-1-propyne] for gas separation membranes", Polym. Eng. Sci., 29, 44 (1989).   DOI
12 M. Yoshikawa, M. Kishida, M. Tanigaki, and W. Eguchi, "Novel liquid membrane transport system for tryptophan", J. Membr. Sci., 47, 53 (1989).   DOI
13 K. Nagai, A. Higuchi, and T. Nakagawa, "Bromination and gas permeability of poly(1-trimethylsilyl-1-propyne) membrane", J. Appl. Polym. Sci., 54, 1207 (1994).   DOI
14 L. Starannikova, V. Khodzhaeva, and Yu. Yampolskii, "Mechanism of aging of poly[1-(trimethylsilyl)-1-propyne] and its effect on gas permeability", J. Membr. Sci., 244, 183 (2004).   DOI
15 K. Nagai and T. Nakagawa, "Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts", J. Membr. Sci., 105, 261 (1995).   DOI
16 T. Nakagawa, S. Fujisaki, H. Nakano, and A. Higuchi, "Physical modification of poly[1-{trimethylsilyl)-1-propyne] membranes for gas separation", J. Membr. Sci., 94, 183 (1994).   DOI
17 Y. Nagase, S. Mori, and K. Matsui, "Chemical modification of poly(substituted-acetylene). III. Synthesis and gas permeability of poly(1-phenyl-1-propyne)/poly(dimethylsiloxane) graft copolymer", J. Polym. Sci., 26, 3131 (1988).   DOI
18 Y. Nagase, T. Ueda, K. Matsui, and M. Uchikura, "Chemical modification of poly(seda, Kiyoh-acetylene). I. Synthesis and gas permeability of poly(1-trimethylsilyl-1-propyne)/poly(dimethylsiloxane) graft copolymer", J. Polym. Sci., Part B: Polym. Phys., 29, 171 (1991).   DOI
19 Y. S. Kang, E. M. Shin, B. Jung, and J. J. Kim, "Composite membranes of poly(1-trimethylsilyl-1-propyne) and poly(dimethyl siloxane) and their pervaporation properties for ethanol-water mixture", J. Appl. Polym. Sci, 53, 317 (1994).   DOI
20 D. P. Queiroz and M. N. D'Pinho, "Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes", Polymer, 46, 2346 (2005).   DOI
21 B. D. Ratner, "Surface characterization of biomaterials by electron spectroscopy for chemical analysis", Ann. Biomed. Eng., 11, 313 (1983).   DOI
22 W. J. Ward III, W. R. Browall, and R. M. Salemme, "Ultrathin silicone/polycarbonate membranes for gas separation processes" J. Membr. Sci., 1, 99 (1976).   DOI
23 P. C. Lebaron and T. J. Pinnavaia, "Clay nanolayer reinforcement of a silicone elastomer", Chem. Mater., 13, 3760 (2001).   DOI
24 S. L. Hong and T. B. Kang, "Separation of $H_2$/$N_2$ gas mixture by PTMSP/PDMS-PEI composite membrane", Membr. J., 14(4), 298 (2004).
25 D. Gomes, S. P. Nunes, and K. Peinemann, "Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites", J. Membr. Sci., 246, 13 (2005).   DOI
26 T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, "Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne)", Macromolecules, 36, 6844 (2003).   DOI
27 K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, "Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics", J. Membr. Sci., 278, 83 (2006).   DOI
28 J. I. Ha and T. B. Kang, "Separation of $H_2$ and $N_2$ by PDMS-NaYzeolite composite membranes", Membr. J., 20, 47 (2010).
29 R. Govind and D. Atnoor, "Development of a composite palladium membrane for selective hydrogen separation at high temperature", Ind. Eng. Chem. Res., 30, 591 (1991).   DOI
30 S. Uemiya, N. Sato., H. Ando, Y. Kude, T. Matsuda, and E. Kikuchi, "Separation of hydrogen through palladium thin film supported on a porous glass tube", J. Membr. Sci., 56, 303 (1991).   DOI
31 G. Adachi, H. Nagai, and J. Shiokawa, "$LaNi_5$ film for hydrogen separation", J. Less-Common Metals, 97, L9 (1984).   DOI
32 N. Naito, K. Nakahira, Y. Fukuda, H. Mori, and J. Tsubaki, "Process condition on the preparation of supported microporous $SiO_2$ membranes by sol-gel modification techniques", J. Membr. Sci., 129, 263 (1997).   DOI
33 D. Li, D. R. Seok, and S. T. Hwang, "Gas permeability of high-temperature-resistant silicone polymer-vycor glass membrane", J. Membr. Sci., 37, 267 (1998).
34 D. Li and S. T. Hwang, "Gas separation by silicone based inorganic membrane at high temperature", J. Membr. Sci., 66, 119 (1992).   DOI
35 A. B. Shelekhim, E. J. Grosgogeat, and S. T. Hwang, "Gas separation properties of a new polymer/ceramic composite membrane", J. Membr. Sci., 66, 129 (1992).   DOI
36 S. H. Lee and T. B. Kang, "Separation of hydrogen-nitrogen gases by PTMSP-borosilicate composite membranes", Membra. J., 24, 438 (2014).   DOI