DOI QR코드

DOI QR Code

Study on Characteristics of Fine Bottom Ash Based Geopolymer Mortar

미분쇄 바텀애시 기반 지오폴리머 모르타르 특성에 관한 연구

  • 임귀환 (대진대학교 토목공학과) ;
  • 이정배 (대진대학교 건설시스템공학과) ;
  • 정현규 (대진대학교 토목환경공학과) ;
  • 김성수 (대진대학교 건설시스템공학과)
  • Received : 2016.11.18
  • Accepted : 2016.12.23
  • Published : 2016.12.30

Abstract

This study is an experimental study on the recycling of bottom ash in coal ash discharged from a thermal power plant. Bottom ash has limited research on recycling because it has more porous and higher water absorption ratio than fly ash. In this paper, the bottom ash was pulverized to a specific surface area of $4,000cm^2/g$ in order to use as a binder, and the flow, compressive strength test and microstructure analysis of the bottom ash based geopolymer mortar were performed. The flow measurement results of the geopolymer mortar showed that the flow rate was improved by increasing mixing water as the molar concentration of activator was increased. Compressive strength increased with increasing curing temperature and molar concentration. Through the microstructure analysis, we could confirm the geopolymer gel produced by the reaction of the condensation polymerization. It is considered that it is possible to make the bottom ash based geopolymer concrete through proper molar concentration of activator and high temperature curing.

본 연구는 화력발전소에서 배출되는 바텀애시의 재활용에 대한 실험적 연구이다. 바텀애시는 플라이애시 보다 다공성 및 높은 흡수율 등의 특징으로 재활용에 대한 연구가 제한적인 실정이다. 본 논문에서는 바텀애시를 결합재로 사용하기 위해 비표면적을 $4,000cm^2/g$까지 미분쇄하였으며, 바텀애시 기반 지오폴리머 모르타르의 플로우, 압축강도 시험 및 미세구조 분석을 실시하였다. 지오폴리머 모르타르의 플로우 측정 결과 활성화제 몰농도가 증가함에 따라 추가배합수가 증가하여 플로우 값이 향상되었다. 압축강도를 검토한 결과 양생온도와 몰농도가 높을수록 압축강도가 증가하였고, 미세구조 분석을 통하여 지오폴리머 반응으로 생성된 지오폴리머 겔을 확인할 수 있었다. 따라서 활성화제 사용 시 지오폴리머 반응은 온도 상승에 비례하여 촉진되기 때문에 적절한 활성화제 몰농도와 고온양생을 통하여 바텀애시 기반 지오폴리머 콘크리트의 제작이 가능할 것으로 판단된다.

Keywords

References

  1. Kang, S.T., Ryu, G.S., Koh, K.T., Lee, J.H. (2011). Optimum mix design of alkali-activated cement mortar using bottom ash as binder, Journal of the Korea Concrete Institute, 23(4), 487-494 [in Korean]. https://doi.org/10.4334/JKCI.2011.23.4.487
  2. Kim, J.T., Seo, D.S., Kim, G.J., Lee, J.K. (2010). Influence of alkaline-activator content on the compressive strength of aluminosilicate-based geopolymer, The Korean Ceramic Society, 47(3), 216-222 [in Korean]. https://doi.org/10.4191/KCERS.2010.47.3.216
  3. Kwon, K.J. (2010). Utilization of fly & bottom ash as concrete meterials, Architectural Institute of Korea, 54(2), 46-49 [in Korean].
  4. Ministry of Trade, Industry and Energy. (2015). Seventh Electricity Supply Plan [in Korean].
  5. Ryu, G.S. (2015). Development and application technology of geopolymer concrete, Journal of the Korea Concrete Institute, 10(1), 7 [in Korean].
  6. Sathonsaowaphak, A. (2009). Workability and strength of lignite bottom ash geopolymer mortar, Journal of Hazardous Materials, 168(1), 44-50. https://doi.org/10.1016/j.jhazmat.2009.01.120
  7. Wang, S.D., Scrivener, K.D. (1995). Hydration products of alkali activated slag cement, Cement Concrete Research, 25(3), 561-571. https://doi.org/10.1016/0008-8846(95)00045-E
  8. Won, G.H. (2015). Study on Characteristics of Geopolymer by Recycling Waste Coal Ash, Master's Thesis, Kyonggi University [in Korean].
  9. Xiaolu, G., Huisheng, S., Warren, A.D. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cement & Concrete Composites, 32(2), 142-147. https://doi.org/10.1016/j.cemconcomp.2009.11.003
  10. Zuhua, Z., Xiao, Y., Huajun, Z., Yue, C. (2008). Role of water in the synthesis of calcined Kaolin-based geopolymer, Applied Clay Science, 43(2), 218-223. https://doi.org/10.1016/j.clay.2008.09.003