• 제목/요약/키워드: Porous surface

검색결과 1,492건 처리시간 0.026초

흑연분말을 이용한 다공성 니켈지지체의 제조에 관한 연구 (A Study on the Fabrication of Porous Nickel Substrates Using Graphite Powder)

  • 박성용;백지흠;조원일;조병원;윤경석
    • 한국표면공학회지
    • /
    • 제28권5호
    • /
    • pp.276-288
    • /
    • 1995
  • A nickel mesh and an expanded nickel sheet were used as a current collector for supporting active materials of cathode in rechargeable batteries, while a porous nickel substrate was extensively studied because of its 3-dimensional structure which has high capabilities for active materials and current collection. Optimum coating conditions were studied by SEM and two step d. c. constant current electrolysis for the graphite coating and electro-plated nickel on an urethane substance which was highly porous and 3-dimensional structure. The density and the porosity of nickel support obtained by using two step current density and 80 ppi urethane substance were 0.38∼0.40 g /㎤ and 94∼96%, respectively. It was possible to fabricate a highly porous and good packable nickel substrate using two step current density and surfactants at sulfamic acid nickel plating bath.

  • PDF

수증기처리공정에 의한 다공성 코디어라이트의 제조 (Preparation of Porous Cordierite by Using Water-Vapour Treatment)

  • 문교태;서신석;노재성;조득희;김동표
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.986-992
    • /
    • 1997
  • Cordierite ceramic was prepared by sol-gel method. It was analyzed by Infrared spectroscopy and X-ray diffraction patterns that the ceramic was chemically mixed in molecular level and transformed to $\alpha$-cordierite at 125$0^{\circ}C$. Water vapour treatments for aging and drying process were conducted to get porous cordierite with thermally stable pore structure. It resulted in 220-410 $m^2$/g BET surface area and mesoporous structure with mean pore diameter, 40$\AA$. Compared to naturally dried ceramic, the ceramic showed superior thermal stability of surface area up to $700^{\circ}C$. Surfaces of porous cordierite ceramics were observed by SEM.

  • PDF

Comparison of physical properties and dye photo-degradation effects for $carbon/TiO_2$ complexes

  • Oh, Won-Chun;Lim, Chang-Sung
    • 한국결정성장학회지
    • /
    • 제17권5호
    • /
    • pp.196-203
    • /
    • 2007
  • We have studied a method for the preparation of hybrid $carbon/TiO_2$ complexes involving pitch coating, pitch binding and the penetration of titanium n-butoxide(TNB) solution with porous carbon. The photocatalysts were investigated with surface textural properties and SEM morphology, structural crystallinity and elemental identification between porous carbon and $TiO_2$, and dye decomposition performance. For the all $carbon/TiO_2$ complexes prepared by some kinds of different methods, the excellent photocatalytic effect for dye degradation should be attributed to the both effects between photo-decomposition of the supported $TiO_2$ and adsorptivity of the porous carbons.

Effect of Collector Temperature on the Porous Structure of Electrospun Fibers

  • Kim Chi Hun;Jung Yoon Ho;Kim Hak Yong;Lee Douk Rae;Dharmaraj Nallasamy;Choi Kyung Eun
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.59-65
    • /
    • 2006
  • We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) were dissolved in volatile solvents, namely methylene chloride (Me) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.

Influence of Ionic Liquid as a Template on Preparation of Porous η-Al2O3 to DME Synthesis from Methanol

  • Yoo, Kye-Sang;Lee, Se-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1628-1632
    • /
    • 2010
  • Porous ${\eta}-Al_2O_3$ was synthesized by modified sol-gel method using ionic liquid as a templating material. The addition of ionic liquid assisted to increase the surface area of alumina. However, the acidity of aluminas prepared with ionic liquids was hardly affected regardless the change of its structural properties. Among the ionic liquids used in this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][$PF_6$]) was the most effective ionic liquid to produce porous ${\eta}-Al_2O_3$ particles. The catalytic performance of these aluminas has been investigated in dehydration of methanol to produce dimethyl ether. The alumina prepared with [Bmim][$PF_6$] outperformed the other aluminas except ${\eta}-Al_2O_3$ without modification in this reaction.

원통형 메크로기공을 갖는 다공질 실리콘과 다이어프램의 제작 (Fabrication of Cylindrical Macroporous Silicon and Diaphragms)

  • 민남기;이치우;하동식;정우식
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.620-627
    • /
    • 1998
  • For chemical microsensors such as humidity and gas sensors, it is essential to obtain a single pore with a large inner surface and straight structure. In this paper, cylindrical macroporous silicon layers have been formed of p-silicon substrate by anodization in HF-ethanol-water solution with an applied current. The pores grew normal to the (100) surface and were uniformly distributed. The pore diameter was approximately $1.5~2{\mu}m$ with a depth of $20~30{\mu}m$ and the pores were not interconnected, which are in sharp contrast to the porous silicon reported previouly for similarly doped p-Si. Porous silicon diaphragms 18 to $200{\mu}m$ thick were formed by anistropic etching in TMAH solution and then anodization. The fabrication of macroporous silicon and free-standing diaphragms is expected to offer applications for microsensors, micromachining, and separators.

  • PDF

전기화학적 방법을 통한 금속 이중기공구조 형성 및 제어 (Formation and Control of Dual Porous Structures of Metal by an Electrochemical Method)

  • 하성혁;신헌철
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.65-72
    • /
    • 2019
  • Dual porous structures are observed for the first time on a metallic Cu surface underneath anodic Cu oxide by the application of an anodizing voltage to Cu in oxalic acid. The as-prepared porous Cu surface contains macropores of less than $1{\mu}m$ diameter and mesopores of about tens of nanometers diameter with circular shapes. The size and density (number of pores/area) of the macropores are dependent on the applied voltage. It is likely that the localized dissolution (corrosion) of Cu in oxalic acid under the anodizing voltages is responsible for the formation of the mesopores, and the combination of a number of the mesopores might create the macropores, especially under a relatively high anodizing voltages or a prolonged anodizing time. The variations of pore structure (especailly macropores) with applied voltage and time are reasonably explained on the basis of the proposed mechanism of pore formation.

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.523-531
    • /
    • 2021
  • The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Porous Coordination Polymers of Zinc(II)-dicarboxylate-diamine and Their Gas Sorption Properties

  • Chun, Hyung-Phil
    • 한국결정학회지
    • /
    • 제16권2호
    • /
    • pp.61-65
    • /
    • 2005
  • Despite a short history, the research on porous coordination polymers is gaining importance in inorganic chemistry thanks to facile synthesis, unambiguous characterization by X-ray diffraction and potentials as high-surface-area materials. Recently, gas sorption properties of various porous materials are under active investigations in order to know whether it is possible to store industrially important gases through physisorption, and porous coordination polymers are one of the most promising candidates for such a purpose. This article reviews two recent papers reporting a series of isomorphous frameworks based on Zn(II), dicarboxylate and diamine ligands and their gas sorption properties.

Chemical and Physical Properties of Porous Silicon

  • Jang, Seunghyun
    • 통합자연과학논문집
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2011
  • The properties of porous silicon, such as substrate properties, porosity, thickness, refractive index, surface area, and optical properties of porous silicon were reviewed. Some properties, such as porosity, refractive index, thickness, pore diameter, multi-structures, and optical properties, are strongly dependent on the anodization process parameters. These parameters include HF concentration, current density, anodization time, and silicon wafer type and resistivity.