DOI QR코드

DOI QR Code

Chemical and Physical Properties of Porous Silicon

  • Received : 2010.03.02
  • Accepted : 2011.03.21
  • Published : 2011.03.31

Abstract

The properties of porous silicon, such as substrate properties, porosity, thickness, refractive index, surface area, and optical properties of porous silicon were reviewed. Some properties, such as porosity, refractive index, thickness, pore diameter, multi-structures, and optical properties, are strongly dependent on the anodization process parameters. These parameters include HF concentration, current density, anodization time, and silicon wafer type and resistivity.

Keywords

References

  1. A. Uhlir, "Electrolytic shaping of germanium and silicon", Bell Synt. Tech. J., Vol. 35, p. 333, 1956. https://doi.org/10.1002/j.1538-7305.1956.tb02385.x
  2. D. R. Turner, "Electropolishing Silicon in Hydrofluoric Acid Solutions", J. Electrochem. Soc., Vol. 105, p. 402 1958. https://doi.org/10.1149/1.2428873
  3. Y. Arita, K. Kato, and T. Sudo, "The n+-IPOS scheme and its applications to IC's", IEEE T. Electron Dev., Vol. 24, p. 757, 1977. https://doi.org/10.1109/T-ED.1977.18817
  4. T. Unagami and K. Kato, "Study of the Injection Type IPOS Scheme", Jpn. J. Appl. Phys., Vol. 16, p. 1635, 1977. https://doi.org/10.1143/JJAP.16.1635
  5. K. Imai, "A new dielectric isolation method using porous silicon", Solid State Electron, Vol. 24, p. 159, 1981. https://doi.org/10.1016/0038-1101(81)90012-5
  6. F. Otoi, K. Anzai, H. Kitabayashi, K. Uchiho, and Y. Mizokami, "Fabrication of high speed 1 micron FIPOS/CMOS", J. Electrochem. Soc., Vol. 131, p. C319, 1984.
  7. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys. Lett., Vol. 57, p. 1046, 1990. https://doi.org/10.1063/1.103561
  8. A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon", Nature, Vol. 353, p. 335, 1991. https://doi.org/10.1038/353335a0
  9. Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, "Raman analysis of light?emitting porous silicon", Appl. Phys. Lett., Vol. 60, p. 2086, 1992. https://doi.org/10.1063/1.107097
  10. C. Delerue, G. Allan, and M. Lannoo, "Theoretical aspects of the luminescence of porous silicon", Phys. Rev. B, Vol. 48, p. 11024, 1993. https://doi.org/10.1103/PhysRevB.48.11024
  11. F. Koch, V. Petrova-koch, T. Muschik, A. nikolov, and V. Gavrilenko, "Fast Photoluminescence from Porous Silicon", Mater. Res. Soc. Symp. Proc., Vol. 298, p. 319, 1993. https://doi.org/10.1557/PROC-298-319
  12. E. J. Lee, T. W. Bitner, J. S. Ha, M. J. Shane, and M. J. Sailor, "Light-Induced Reactions of Porous and Single-Crystal Si Surfaces with Carboxylic Acids", J. Am. Chem. Soc., Vol. 118, p. 5375, 1996. https://doi.org/10.1021/ja960777l
  13. J. M. Buriak and M. J. Allen, "Lewis Acid Mediated Functionalization of Porous Silicon with Substituted Alkenes and Alkynes", J. Am. Chem. Soc., Vol. 120, p. 1339, 1998. https://doi.org/10.1021/ja9740125
  14. A. Richter, P. steiner, F. Kozlowski, and W. Lang, "Current induced light emission from a porous silicon device", IEEE Electron Device Lett., Vol. 12, p. 691, 1991. https://doi.org/10.1109/55.116957
  15. K. D. Hirschmann, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits", Nature, Vol. 384, p. 338, 1996. https://doi.org/10.1038/384338a0
  16. C. Mazzoleni and L. Pavesi, "Application to optical components of dielectric porous silicon multilayers", Appl. Phys. Lett., Vol. 67, p. 2983, 1995. https://doi.org/10.1063/1.114833
  17. G. Smestad, M. Kunst, and C. Vial, "Photovoltaic response in electrochemically prepared photoluminescent porous silicon", Sol. Energy Mater. Sol. Cells, Vol. 26, p. 277, 1992. https://doi.org/10.1016/0927-0248(92)90047-S
  18. J. M. Lauerhaas and M. J. Sailor, "Chemical Modification of the Photoluminescence Quenching of Porous Silicon", Science, Vol. 261, p. 1567, 1993. https://doi.org/10.1126/science.261.5128.1567
  19. H. Sohn, S. Letant , M. J. Sailor, and C. Trogler, "Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer", J. Am. Chem. Soc., Vol. 122, p. 5399, 2000. https://doi.org/10.1021/ja0006200
  20. S. Letant and M. J. Sailor, "Molecular Identification by Time-Resolved Interferometry in a Porous Silicon Film", Adv. Mater., Vol. 13, p. 355, 2001. https://doi.org/10.1002/1521-4095(200103)13:5<355::AID-ADMA355>3.0.CO;2-D
  21. S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of Gram Negative Bacteria Using Nanoscale Silicon Microcavities", J. Am. Chem. Soc., Vol. 123, p. 11797, 2001. https://doi.org/10.1021/ja016555r
  22. H. Sohn, R. M. Calhoun, M. J. Sailor, and W. C. Trogler, "Detection of TNT and Picric Acid on Surfaces and in Seawater by Using Photoluminescent Polysiloles", Angew. Chem. Int. Ed., Vol. 40, p. 2104, 2001. https://doi.org/10.1002/1521-3773(20010601)40:11<2104::AID-ANIE2104>3.0.CO;2-#
  23. H. Sohn, M. J. Sailor, D. magde, and W. C. Trogler, "Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles", J. Am. Chem. Soc., Vol. 125, p. 3821, 2003. https://doi.org/10.1021/ja021214e
  24. X, Li, J. L. Coffer, Y. D. Chen, R. F. Pinizzotto, J. Newey, and L. T. Canham, "Transition Metal Complex- Doped Hydroxyapatite Layers on Porous Silicon", J. Am. Chem. Soc., Vol. 120, p. 11706, 1998. https://doi.org/10.1021/ja9823666
  25. N. Koshida, T. Nakajima, M. Yoshiyama, K. Ueno, T. Nakagawa, and H. Shinoda, "Ultrasound emission from porous silicon - Efficient thermoacoustic function as a depleted nanocrystalline system", Mater. Res. Soc. Symp. Proc., Vol. 536, p. 105, 1999.
  26. T. E. Bell, P. T. J. Gennissen, D. Demunter, and M. Kuhl, "Porous silicon as a sacrificial material", J. Micromech. Microeng., Vol. 6, p. 361, 1996. https://doi.org/10.1088/0960-1317/6/4/002
  27. V. G. Zubko, T. L. Smith, and A. N. Witt, "Detection of Extended Red Emission in the Diffuse Interstellar Medium", J. Astrophys., Vol. 498, p. 501, 1998.
  28. V. P. Parkhutik, E. Matveeva, R. Perez, J. Alamo, and D. Beltraan, "Mechanism of large oscillations of anodic potential during anodization of silicon in H3PO4/HF solutions", Mater. Sci. Engn. B, Vol. 69-70, p. 53, 2000. https://doi.org/10.1016/S0921-5107(99)00279-2
  29. V. P. Bondarenko, Y. V. Bogatirev, J. P. Colinge, L. N. Dolgyi, A. M. Dorofeev, and V. A. Yakovtseva, "Total gamma dose characteristics of CMOS devices in SOI structures based on oxidized porous silicon", IEEE. Trans. Nucl. Sci., Vol. 44, p. 1719, 1997. https://doi.org/10.1109/23.633424
  30. V. P. Parkhutik and L. T. Canham, "Derivatized Porous Silicon Mirrors: Implantable Optical Components with Slow Resorbability", Phys. Stat. Sol. A, Vol. 182, p. 591, 2000. https://doi.org/10.1002/1521-396X(200011)182:1<591::AID-PSSA591>3.0.CO;2-G
  31. R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", J. Appl. Phys., Vol. 71, p. R1, 1992. https://doi.org/10.1063/1.350839
  32. M. Christopersen, J. Carstensen, and H. Foll, "Parameter Dependence of Pore Formation in Silicon within a Model of Local Current Bursts", Phys. Stat. Sol. A, Vol. 182, p. 601, 2000. https://doi.org/10.1002/1521-396X(200012)182:2<601::AID-PSSA601>3.0.CO;2-9
  33. S. F. Chuang, S. D. Collins, and R. L. Smith, "Preferential propagation of pores during the formation of porous silicon: A transmission electron microscopy study", Appl. Phys. Lett., Vol. 55, p. 675, 1989. https://doi.org/10.1063/1.101819
  34. D. Brumhead, L. T. Canham, D. M. Seekings, and P. J. Tufton, "Gravimetric analysis of pore nucleation and propagation in anodised silicon", Electrochi. Acta., Vol. 38, p. 191, 1993. https://doi.org/10.1016/0013-4686(93)85128-L
  35. D. J. Bergman, "The dielectric constant of a composite material?A problem in classical physics", Phys. Rep. C, Vol. 43, p. 377, 1978. https://doi.org/10.1016/0370-1573(78)90009-1
  36. H. Looyenga, "Dielectric constants of heterogeneous mixtures", Physica, Vol. 31, p. 401, 1965. https://doi.org/10.1016/0031-8914(65)90045-5
  37. S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of Gases in Multimolecular Layers", J. Am. Chem. Soc., Vol. 60, p. 309, 1938. https://doi.org/10.1021/ja01269a023
  38. S. Sawada, N. Hamada, and N. Ookubo, "Mechanisms of visible photoluminescence in porous silicon", Phys. Rev. B, Vol. 49, p. 5236, 1994. https://doi.org/10.1103/PhysRevB.49.5236
  39. A. J. Read, R. J. Needs, K. J. Nash, L. T. Canham, P. D. J. Calcott, and A. Qteish, "First-principles calculations of the electronic properties of silicon quantum wires", Phys. Rev. Lett., Vol. 69, p. 1232, 1992. https://doi.org/10.1103/PhysRevLett.69.1232
  40. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites", Phys. Rev. B, Vol. 48, p. 2827, 1993. https://doi.org/10.1103/PhysRevB.48.2827

Cited by

  1. Characterization and Surface-Derivatization of Porous Silicon vol.4, pp.3, 2011, https://doi.org/10.13160/ricns.2011.4.3.182
  2. Multiple-Bit Encodings of Bragg Photonic-structures by Using Consecutive Etch with Various Square Wave Currents vol.4, pp.3, 2011, https://doi.org/10.13160/ricns.2011.4.3.192
  3. Fabrication and Characterization of Free-Standing Silicon Nanowires Based on Ultrasono-Method vol.6, pp.3, 2011, https://doi.org/10.13160/ricns.2013.6.3.170
  4. Well Defined One-Dimensional Photonic Crystal Templated by Rugate Porous Silicon vol.6, pp.3, 2011, https://doi.org/10.13160/ricns.2013.6.3.183
  5. Preparation and Characterization of Flexible Optical Composite Films Based on Bragg-Structured Interferometer vol.6, pp.4, 2013, https://doi.org/10.13160/ricns.2013.6.4.244
  6. Fabrication and Characterization of Free-Standing DBR Porous Silicon Film vol.7, pp.1, 2014, https://doi.org/10.13160/ricns.2014.7.1.1