Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.2.65

Formation and Control of Dual Porous Structures of Metal by an Electrochemical Method  

Ha, Seong-Hyeok (School of Materials Science and Engineering, Pusan National University)
Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.29, no.2, 2019 , pp. 65-72 More about this Journal
Abstract
Dual porous structures are observed for the first time on a metallic Cu surface underneath anodic Cu oxide by the application of an anodizing voltage to Cu in oxalic acid. The as-prepared porous Cu surface contains macropores of less than $1{\mu}m$ diameter and mesopores of about tens of nanometers diameter with circular shapes. The size and density (number of pores/area) of the macropores are dependent on the applied voltage. It is likely that the localized dissolution (corrosion) of Cu in oxalic acid under the anodizing voltages is responsible for the formation of the mesopores, and the combination of a number of the mesopores might create the macropores, especially under a relatively high anodizing voltages or a prolonged anodizing time. The variations of pore structure (especailly macropores) with applied voltage and time are reasonably explained on the basis of the proposed mechanism of pore formation.
Keywords
copper; porous structure; anodic oxidation; localized corrosion; oxalic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.-C. Shin and M. Liu, Chem. Mater., 16, 5460 (2004).   DOI
2 J. Cabana, J. Monconduit, D. Larcher and M. R. Palacin, Adv. Mater., 22, E170 (2010).   DOI
3 M. Ahmad, J. Zhao, J. Iqbal, W. Miao, L. Xie, R. Mo and J. Zhu, J. Mater. Chem., 21, 7723 (2011).   DOI
4 D. H. Ha, M. A. Islam and R. D. Robinson, Nano Lett., 12, 5122 (2012).   DOI
5 Y. M. Chun and H. C. Shin, Electrochim. Acta, 209, 369 (2016).   DOI
6 J. Vetter, P. Nova'k, M.R. Wagner, C. Veit, K.-C. Moller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, J. Power Sources, 147, 269 (2005).   DOI
7 M. Wachtler, M. Winter and J. O. Besenhard, J. Power Sources, 105, 151 (2002).   DOI
8 H.-C. Shin, J. Dong and M. Liu, Adv. Mater., 15, 1610 (2003).   DOI
9 K.-L. Lee, J.-Y. Jung, S.-W. Lee, H.-S. Moon and J.-W. Park, J. Power Sources, 129, 270 (2004).   DOI
10 R. H. Kim, D. W. Han, D. H. Nam, J. H. Kim and H. S. Kwon, J. Electrochem. Soc., 157, D269 (2010).   DOI
11 Y. H. Rho, K. Kanamura, M. Fujisaki, J.-I. Hamagami, S.-I. Suda and T. Umegaki, Solid State Ionics, 151, 151 (2002).   DOI
12 H. Duan, J. Gnanaraj, X. Chen, B. Li and J. Liang, J. Power Sources, 185, 512 (2008).   DOI
13 P. L. Taberna, S. Mitra, P. Poizot, P. Simon and J. M. Tarascon, Nat. Mater., 5, 567 (2006).   DOI
14 M. H. Ryou, Y. M. Lee, Y. Lee, M. Winter and P. Bieker, Adv. Funct. Mater., 25, 834 (2015).   DOI
15 X. Zhou, G. E. Thompson, H. Habazaki, K. Shimizu, P. Skeldon and G. C. Wood, Thin Solid Films, 293, 327 (1997).   DOI
16 S. Rudenja, J. Pan, I. Odnevall, C. Leygraf, P. Kulu, J. Electrochem. Soc., 146(11), 4082, (1999)   DOI
17 J. P. O'sullivan, and G. C. Wood, Proc. R. Soc. Lond. A, 317, 511 (1970).   DOI
18 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey, J. Mater. Res., 16, 3331 (2001).   DOI
19 G. E. Thompson, Thin Solid Films, 297, 192 (1997).   DOI
20 J.-W. Lee, S.-J. Park, W.-S. Choi, H.-C. Shin, Electrochim. Acta, 56, 5919 (2011).   DOI
21 K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn and U. Gosele, Nano Lett., 2, 677 (2002).   DOI
22 S. H. Park, H. S. Shin, Y. H. Kim, H. M. Park and J. Y. Song, J. Alloys Compd., 580, 152 (2013).   DOI
23 J. L. Ord and D. J. DeSmet, J. Electrochem. Soc., 123, 1876 (1976).   DOI