• Title/Summary/Keyword: Pore velocity

Search Result 210, Processing Time 0.023 seconds

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

Natural gas hydrates in the eastern deep-water Ulleung Basin (동부 심해 울릉분지의 천연가스 하이드레이트)

  • Ryu, Byong-Jae;Kim, Ji-Hoon;Chung, Bu-Heung;Lee, Young-Joo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.610-612
    • /
    • 2008
  • Piston cores retrieved from the eastern part of the deep-water Ulleung Basin were analyzed to access the potential of hydrocarbon gas generation and natural gas hydrate (NGH) formation. Seismic data acquired in the study area were also analyzed to determine the presence of hydrocarbon gas and/or NGH, and to map their distribution. Core analyses revealed high total organic carbon (TOC) contents which favor hydrocarbon generation. The cores recovered from the southern study area showed the sufficient residual hydrocarbon gas concentrations for the formation of significant NGH. These cores also showed the cracks developed parallel to the bedding that suggest significant gas content in situ. A number of seismic blanking zones were observed on seismic data. They are identified as vertical to sub-vertical chimneys caused by the upward migration of pore fluid or gas, and containing of free gas and/or NGH. Often, they are associated with velocity pull-up structures that are interpreted to be the result of high-velocity NGH. The seismic data also showed several bottom-simulating reflectors (BSRs) that are associated with overlying NGH and underlying free gas. The distribution of blanking zones and BSRs would be impacted by the lateral differences of upward methane fluxes.

  • PDF

A Case Study of Sediment Transport on the Seabed due to Wave and Current Velocities

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.99-111
    • /
    • 2016
  • Seabed affected by scouring, sedimentation, and siltation occurrences often cause exposure, which induces risks to existing structures or crude oil or gas pipeline buried subsea. In order to prevent possible risks, more economical structure installation methodology is proposed in this study by predicting and managing the risk. Also, the seabed does not only consist of sandy material, but clayey soil is also widespread, and the effect of undrained shear strength should be considered, and by cyclic environmental load, pore water pressure will occur in the seabed, which reduces shear strength and allows particles to move easily. Based on previous research regarding sedimentation or erosion, the average value of external environmental loads should be applied; for scouring, a 100-year period of environmental conditions should be applied. Also, sedimentation and erosion are mainly categorized by the bed load and suspended load; also, they are calculated as the sum of bed load and suspended load, which can be obtained from the movement of particles caused by sedimentation or erosion.

A Study on the Improvement of Membrane Separation and Optimal Coagulation by Using Effluent of Sewage Treatment Plant in Busan

  • Jung, Jin-Hee;Choi, Young-Ik;Han, Young-Rip
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1353-1361
    • /
    • 2013
  • The objectives of this paper are the characterization of the pretreatment of wastewater by microfiltration (MF) membranes for river maintenance and water recycling. This is done by investigation of the proper coagulation conditions, such as the types and doses of coagulants, mixing conditions (velocity gradients and mixing periods), pH, etc., using jar tests. The effluent water from a pore control fiber (PCF) filter located after the secondary clarifier at Kang-byeon Sewage Treatment Plant (K-STP) was used in these experiments. Two established coagulants, aluminum sulfate (Alum) and poly aluminum chloride (PAC), which are commonly used in sewage treatment plants to treat drinking water, were used in this research. The results indicate that the optimal coagulation velocity gradients (G) and agitation period (T) for both Alum and PAC were 200-250 $s^{-1}$ and 5 min respectively, but the coagulation efficiencies for both Alum and PAC were lower at low values of G and T. For a 60 min filtration period on the MF, the flux efficiencies ($J/J_0$ (%)) at the K-STP effluent that were coagulated by PAC and Alum were 92.9 % and 79.9 %, respectively, under the same coagulation conditions. It is concluded that an enhanced membrane process is possible by effective filtration of effluent at the K-STP using the coagulation-membrane separation process.

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

Forced Convective Boiling of Refrigerant-Oil Mixtures in a Bundle of Enhanced Tubes Having Pores and Connecting Gaps

  • Park, Ji-Hoon;Kim, Nae-Hyun;Kim, Do-Young;Byun, Ho-Won;Choi, Yong-Min;Kim, Soo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • The effect of oil on convective boiling of R-123 in an enhanced tube bundle is experimentally investigated at $26.7^{\circ}C$ saturation temperature. The enhanced tube had pores (0.23 mm diameter) and connecting gaps (0.07 mm width), which had been optimized using pure R-123. The effects of oil concentration (0 to 5%), heat flux (10 to $40\;kW/m^2$), mass velocity (8 to $26\;kg/m2^s$) and vapor quality are investigated. The oil significantly reduces the bundle boiling heat transfer coefficient. With 1% oil, the reduction is approximately 35%. Further addition of oil further reduces the heat transfer coefficient. The data are also compared with the pool boiling counterpart. The reduction in the heat transfer coefficient is smaller in a bundle (convective boiling) than in a pool (single-tube pool boiling), with larger difference at a smaller heat flux. Similar to pure R-123 case, the effects of mass velocity and vapor quality are negligible for the convective boiling of R-123/oil mixture.

A Study on Fabrication of 3D Hydroxyapatite Scaffolds Using a Laser Sintering Deposition System (레이저 소결 적층 시스템을 이용한 3차원 수산화인회석 인공지지체 제작에 관한 연구)

  • Choi, Seung-Hyeok;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • Calcium-phosphate-based bioceramics are promising biomaterials for scaffolds because they can assist in bone regeneration. In this study, a laser sintering deposition system was developed, and 3D hydroxyapatite (HA) scaffolds were fabricated. The main process conditions of the HA scaffolds were laser power, table velocity, and laser focal distance. As the laser power increased, the line width, line height, and layer thickness also increased. Further, the line width, line height, and layer thickness decreased as the table velocity increased. As the laser focal distance increased, the line width increased, but the line height and layer thickness decreased. The fabricated green scaffolds were sintered at 1050 ℃ and 1150 ℃. The sintered scaffolds had a uniform and continuous interconnected shape, with pore sizes ranging from 850 to 950 ㎛ having 53% porosity. The compressive strength of the scaffolds decreased from 0.72 MPa (1050 ℃) to 0.53 MPa (1150 ℃). The biocompatibility of the scaffolds was investigated by analyzing the adhesion of osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The results indicate that the scaffold sintered at 1050 ℃ had good mechanical and biological properties compared to that at 1150 ℃.

S-wave Velocity Derivation Near the BSR Depth of the Gas-hydrate Prospect Area Using Marine Multi-component Seismic Data (해양 다성분 탄성파 자료를 이용한 가스하이드레이트 유망지역의 BSR 상하부 S파 속도 도출)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.229-238
    • /
    • 2011
  • S-wave, which provides lithology and pore fluid information, plays a key role in estimating gas-hydrate saturation. In general, P- and S-wave velocities increase in the presence of gas-hydrate and the P-wave velocity decreases in the presence of free gas under the gas-hydrate layer. Whereas there are very small changes, even slightly increases, in the S-wave velocity in the free gas layer because S-wave is not affected by the pore fluid when propagating in the free gas layer. To verify those velocity properties of the BSR (bottom-simulating reflector) depth in the gas-hydrate prospect area in the Ulleung Basin, P- and S-wave velocity profiles were derived from multi-component ocean-bottom seismic data which were acquired by Korea Institute of Geoscience and Mineral Resources (KIGAM) in May 2009. OBS (ocean-bottom seismometer) hydrophone component data were modeled and inverted first through the traveltime inversion method to derive P-wave velocity and depth model of survey area. 2-D multichannel stacked data were incorporated as an initial model. Two horizontal geophone component data, then, were polarization filtered and rotated to make radial component section. Traveltimes of main S-wave events were picked and used for forward modeling incorporating Poisson's ratio. This modeling provides S-wave profiles and Poisson's ratio profiles at every OBS site. The results shows that P-wave velocities in most OBS sites decrease beneath the BSR, whereas S-wave velocities slightly increase. Consequently, Poisson's ratio decreased strongly beneath the BSR indicating the presence of a free gas layer under the BSR.

Laboratory study of $CO_2$ migration in water-saturated anisotropic sandstone, based on P-wave velocity imaging (P-파 속도 영상화에 근거한 물로 포화된 이방성 사암에서의 $CO_2$ 이동에 관한 실험 연구)

  • Xue, Ziqiu;Lei, Xinglin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • We measured the changes in P-wave velocity that occur when injecting $CO_2$ in gaseous, liquid, and supercritical phases into water-saturated anisotropic sandstones. P-wave velocities were measured in two cylindrical samples of Tako Sandstone, drilled along directions normal and parallel to the bedding plane, using a piezo-electric transducer array system. The velocity changes caused by $CO_2$ injection are typically -6% on average, with maximum values about -16% for the case of supercritical $CO_2$ injection. P-wave velocity tomograms obtained by the differential arrival-time method clearly show that $CO_2$ migration behaviour is more complex when $CO_2$ flows normal to the bedding plane than when it flows parallel to bedding. We also found that the differences in P-wave velocity images were associated both with the $CO_2$ phases and with heterogeneity of pore distribution in the rocks. Seismic images showed that the highest velocity reduction occurred for supercritical $CO_2$ injection, compared with gaseous or liquid $CO_$ injection. This result may justify the use of the seismic method for $CO_2$ monitoring in geological sequestration.

Carbonation Behavior Evaluation of OPC Concrete Considering Effect of Aging and Loading Conditions (재령 및 하중효과를 고려한 OPC 콘크리트의 탄산화 거동 평가)

  • Hwang, Sang-Hyeon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2019
  • The movement of deterioration agents such as a chloride ion, etc. in concrete varies with loading conditions and micro-structure developed by age effect. In this paper, the carbonation behavior by accelerated carbonation test is evaluated considering curing periods(28 days, 91 days, and 365 days) and loading conditions. Carbonation velocity coefficients are obtained referred to KS F 2584. In the control case without loading condition, carbonation velocity coefficient of 91 days decreases to 50.0 % level and that of 365 days decreases to 44.8 % level than that of 28 days curing condition. In 28 curing days, carbonation velocity coefficients changed level of 103.9 ~ 108.8 % in tensile region and 91.9~104.6 % in compressive region by loading conditions. Carbonation velocity coefficients in the 30 % and 60 % tensile loading case at 28 days decreases to 47.3 % and 52.5 % level compared to control case after 1 year. Furthermore, 45.8 % and 44.9 % level of carbonation velocity coefficients are evaluated for 30 % and 60 % compressive loading conditions compared to control case after 1 year. Carbonation velocity coefficient decreases in the 30 % compressive loading level due to effective pore compaction and it increases afterwards due to micro-cracking. In the tensile loading condition, unlike the behavior of compressive region, it linearly increases with increasing loading level.