Laboratory study of $CO_2$ migration in water-saturated anisotropic sandstone, based on P-wave velocity imaging

P-파 속도 영상화에 근거한 물로 포화된 이방성 사암에서의 $CO_2$ 이동에 관한 실험 연구

  • Xue, Ziqiu (Research Institute of Innovative Technology for the Earth(RITE)) ;
  • Lei, Xinglin (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology(AIST))
  • 설 자구 (지구환경산업기술연구기구) ;
  • 뢰 흥림 (산업기술종합연구소 지질정보연구부문)
  • Published : 2006.02.28

Abstract

We measured the changes in P-wave velocity that occur when injecting $CO_2$ in gaseous, liquid, and supercritical phases into water-saturated anisotropic sandstones. P-wave velocities were measured in two cylindrical samples of Tako Sandstone, drilled along directions normal and parallel to the bedding plane, using a piezo-electric transducer array system. The velocity changes caused by $CO_2$ injection are typically -6% on average, with maximum values about -16% for the case of supercritical $CO_2$ injection. P-wave velocity tomograms obtained by the differential arrival-time method clearly show that $CO_2$ migration behaviour is more complex when $CO_2$ flows normal to the bedding plane than when it flows parallel to bedding. We also found that the differences in P-wave velocity images were associated both with the $CO_2$ phases and with heterogeneity of pore distribution in the rocks. Seismic images showed that the highest velocity reduction occurred for supercritical $CO_2$ injection, compared with gaseous or liquid $CO_$ injection. This result may justify the use of the seismic method for $CO_2$ monitoring in geological sequestration.

물로 포화된 이방성 사암에 기체상, 액체상, 그리고 초임계상의 $CO_2$를 주입하면서 P 파의 속도 변화를 측정하였다. 층리면에 수직한 방향과 수평 방향을 따라 시추한 2 개의 원통 모양의 Tako 사암들에 압전 송수신 배열 시스템을 이용하여 P 파 속도를 측정하였다. $CO_2$ 주입으로 인한 속도 변화는 일반적으로 -6%의 평균값을 보였으며 초임계상의 $CO_2$를 주입하는 경우에 약 -16%의 최대값을 나타냈다. 차분도착주시법(differential arrival-time)으로부터 얻은 P 파 속도 토모그램은 $CO_2$의 유동이 층리면에 평행할 때보다 수직한 경우 $CO_2$의 이동 양상이 더 복잡하다는 것을 명백히 보여주고 있다. 또한 P 파 속도 영상의 차이가 $CO_2$의 상과 암석내 공극분포의 불균질성과 관련되었음을 발견하였다. 초임계상의 $CO_2$를 주입한 경우, 탄성파 영상은 기체상과 액체상의 $CO_2$를 주입한 경우에 비해 가장 큰 속도 감소를 보였다 이 결과는 지중 격리시 $CO_2$ 모니터링에 대한 탄성파 방법의 효용을 확신시켜 줄 것이다.

Keywords

References

  1. Arts, R, Eiken, O., Chadwick, A, Zweigel, P., van der Meer, L., and Zinszner, B., 2004, Monitoring of $CO_2$, injected at Sieipner using time lapse seismic data: Energy, 29, 1383-1392 https://doi.org/10.1016/j.energy.2004.03.072
  2. Benson, S.M., 2005, Overview of geological storage of $CO_2$,: in Thomas, D., and Benson, S.M. (eds), Carbon Dioxide Capture for Storage in Deep Geologic Formations, Volume 2, Elsevier Science, 665-672
  3. Chadwick, RA, Eiken, O., and Lindeberg, E., 2004, 4D geophysical monitoring of the $CO_2$, plume at Sieipner, North Sea: Aspects of uncertainty: Proceedings of the 7th SEGJ International Symposium, Sendai, November, 24-26
  4. Gassmann E, 1951, Uber die Elastizitat poroser Medien: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1-23
  5. Garcia, J., and Pruess, K., 2003, Flow instabilities during injection of $CO_2$2 into saline aquifers: Proceedings of TOUGH Symposium, Lawrence Berkeley National Laboratory, Berkeley, California, May, 12-14
  6. Harris, J.M., Nolen-Hoeksema, R.C., Van Schaack, M., Lazaratos, S.K., and Rector, J.W., 1995, High-resolution crosswell imaging of a west Texas carbonate reservoir: Part I - Project summary and interpretation: Geophysics, 60, 667-681 https://doi.org/10.1190/1.1443806
  7. Hoversten, G.M., and Myer, L.R, 2000, Monitoring of $CO_2$2 sequestration using integrated geophysical and reservoir data: in Williams, D., Durie, B., McMullan, P, Paulson, C; and Smith, A (eds), Proceedings of the 5'h International $CO_2$nference on Greenhouse Gas $CO_2$ntrol Technologies (GHGT5), 305-310
  8. Li, G., 2003, 4D seismic monitoring of $CO_2$2 flood in thin fractured carbonate reservoir: The Leading Edge, 22, 690-695 https://doi.org/10.1190/1.1599698
  9. Mavko, G., and Mukerji, T., 1998, Bounds on low-frequency seismic velocities in partially saturated rocks: Geophysics, 63, 3, 918-924 https://doi.org/10.1190/1.1444402
  10. Saito, H., Azuma, H., Nobuoka, D., Tanase, D. and Xue, Z., 2005, Time-lapse crosswell seismic tomography monitoring of $CO_2$, at an onshore aquifer, Nagaoka, Japan: Exploration Geoophysics, 37, (this issue
  11. Van der Meer, L., 1992, Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands: Energy Conversion and Management, 33, 611-618 https://doi.org/10.1016/0196-8904(92)90063-3
  12. Wang, Z., and Nur, A, 1989, Effects of $CO_2$, flooding on wave velocities in rocks with hydrocarbons: Society of Peteroleum Engineers, Reservoir Engineering, 3, 429-439
  13. Wang, Z., Cates, M., and Langan, R., 1998, Seismic monitoring of a $CO_2$, flooding in a carbonate reservoir: A rock physics study: Geophysics, 63, 1604-1617 https://doi.org/10.1190/1.1444457
  14. Xue, Z., Ohsumi, T., 2004a, Seismic wave monitoring of $CO_2$ migration in watersaturated porous sandstone: Butsuri-Tansa, 57, 25-32
  15. Xue, Z., Ohsumi, T., 2004b, Laboratory measurements on gas permeability and P-wave velocity in two porous sandstones during $CO_2$ flooding: Journal of the Mining and Materials Processing Institute of Japan. 120, 91-98 https://doi.org/10.2473/shigentosozai.120.91
  16. Xue, Z., Ohsumi, T., 2005, Experimental studies on seismic monitoring of $CO_2$, in geological sequestration: Journal of the Japanese Association of Groundwater Hydrology, 47, 29-44 https://doi.org/10.5917/jagh1987.47.29
  17. Xue, Z., Tanase, D., and Watanabe, J., 2005, Estimation of $CO_2$, saturation from time-lapse well logging in an onshore aquifer, Nagaoka, Japan: Exploration Geoophysics, 37, (this issue)