DOI QR코드

DOI QR Code

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon (School of Materials Science and Engineering, University of Ulsan) ;
  • Gjuntera, Victor E. (Research Institute of Shape Memory Medical Materials) ;
  • Kim, Jin-Chun (School of Materials Science and Engineering, University of Ulsan) ;
  • Kwon, Young-Soon (School of Materials Science and Engineering, University of Ulsan)
  • Published : 2010.02.28

Abstract

We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

Keywords

References

  1. K. Otsuka and C. M. Wayman: Shape Memory Materials, 1st ed., Cambridge University Press, Cambridge, United Kingdom, (1998) 220.
  2. D. Y. Li: Smart Mater. Struct., 9 (2000) 717. https://doi.org/10.1088/0964-1726/9/5/317
  3. J. A. Helsen and H. J. Breme: Metals as Biomaterials, 1st ed., John Wiley & Sons, Chichester, United Kingdom, (1998) 73.
  4. A. Pelton, D. Hodgson and T. Duerig: Proc. 1st Int. Conf. on Shape Memory and Superelastic Technologies, SMST-94, SMST Proc., Pacific Grove, CA, (1997) 449.
  5. B. Silberstein: Proc. Int. Conf. on Shape Memory and Superelastic Technologies (SMST-1997), Monterey, USA, (1997) 617.
  6. L. H. Yahia: Shape Memory Implants, 1st ed., Springer, Berlin, (2000) 147.
  7. A. G. Merzhanov, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics: Edizioni ETS, Pisa, Italy, (1997) 1869.
  8. J. J. Moore and H. J. Feng: Progress in Materials Science, 39 (1995) 243. https://doi.org/10.1016/0079-6425(94)00011-5
  9. V. I. Itin, V. E. Gjunter, S. A. Shabalovskaya, and R. L. C. Sachdeva: Mater. Characterization, 32 (1994) 179. https://doi.org/10.1016/1044-5803(94)90087-6
  10. C. L. Chu, B. Li, S. D. Wang, S. G. Zhang, X. X. Yang, and Z. D. Yin: Trans. Nonferrous Met. Soc. China, 7 (1997) 84.
  11. B. Y. Li, L. J. Rong, Y. Y. Li and V. E. Gjunter: J. Mater. Res., 15 (2000) 10. https://doi.org/10.1557/JMR.2000.0004
  12. J. S. Kim, S. H. Lee, J. H. Kang, V. E. Gjunter, S. B. Kang, T. H. Nam and Y. S. Kwon: Proc. Int. Conf. on Shape Memory and Superelastic Technologies (SMST-2000), California, USA, (2000) 77.
  13. J. S. Kim, J. H. Kang, S. B. Kang, K. S. Yoon and Y. S. Kwon: Adv. Eng. Mater., 6 (2004) 403. https://doi.org/10.1002/adem.200405151
  14. J. S. Kim, J. H. Song, M. G. Chang, Y. J. Yum, J. K. Lee and Y. S. Kwon: J. Ceramic Proc. Res., 8 (2007) 70.
  15. H. C. Yi and J. J. Moore: Combustion and Plasma Synthesis of High-temperature Materials, 1st ed., VCH Publishers, Inc., New York, (1990) 122.
  16. J. B. Holt and Z. A. Munir: J. Mater. Sci., 21 (1986) 251. https://doi.org/10.1007/BF01144729

Cited by

  1. Microwave-induced substitutional-combustion reaction of Fe3O4/Al ceramic matrix porous composite vol.46, pp.21, 2011, https://doi.org/10.1007/s10853-011-5669-3