DOI QR코드

DOI QR Code

Carbonation Behavior Evaluation of OPC Concrete Considering Effect of Aging and Loading Conditions

재령 및 하중효과를 고려한 OPC 콘크리트의 탄산화 거동 평가

  • 황상현 (한남대학교 건설시스템 공학과) ;
  • 윤용식 (한남대학교 건설시스템 공학과) ;
  • 권성준 (한남대학교 건설시스템 공학과)
  • Received : 2018.09.28
  • Accepted : 2018.11.28
  • Published : 2019.01.01

Abstract

The movement of deterioration agents such as a chloride ion, etc. in concrete varies with loading conditions and micro-structure developed by age effect. In this paper, the carbonation behavior by accelerated carbonation test is evaluated considering curing periods(28 days, 91 days, and 365 days) and loading conditions. Carbonation velocity coefficients are obtained referred to KS F 2584. In the control case without loading condition, carbonation velocity coefficient of 91 days decreases to 50.0 % level and that of 365 days decreases to 44.8 % level than that of 28 days curing condition. In 28 curing days, carbonation velocity coefficients changed level of 103.9 ~ 108.8 % in tensile region and 91.9~104.6 % in compressive region by loading conditions. Carbonation velocity coefficients in the 30 % and 60 % tensile loading case at 28 days decreases to 47.3 % and 52.5 % level compared to control case after 1 year. Furthermore, 45.8 % and 44.9 % level of carbonation velocity coefficients are evaluated for 30 % and 60 % compressive loading conditions compared to control case after 1 year. Carbonation velocity coefficient decreases in the 30 % compressive loading level due to effective pore compaction and it increases afterwards due to micro-cracking. In the tensile loading condition, unlike the behavior of compressive region, it linearly increases with increasing loading level.

콘크리트에서 염소 이온과 같은 열화물질의 이동은 응력상태 및 재령의 증가에 기인한 공극구조에 따라 변화한다. 본 연구에서는 재령 28일, 91일, 그리고 365일 양생된 OPC 콘크리트의 압축 및 인장 하중조건을 고려하여 촉진탄산화 실험을 실시하였으며, 탄산화 거동을 평가하였다. KS F 2584에 의거하여 탄산화 속도계수를 도출하였는데, 하중을 고려하지 않을 경우 탄산화 속도계수는 재령 28일 대비 재령 91일은 50.0 % 수준으로, 재령 365일에서는 44.8 % 수준으로 감소하였다. 28일 재령 시, 하중의 영향으로 인해 인장재하영역에서는 103.9 ~ 108.8 % 수준으로 압축재하영역에서는 91.9 ~ 104.6 % 수준으로 변화하였다. 재령이 증가함에 따라 탄산화 속도는 크게 감소하였는데, 30 % 인장재하영역에서는 탄산화 속도계수가 1년 경과시 47.3 % 수준으로, 60 % 인장재하영역에서는 52.5 % 수준으로 감소하였으며 30 % 압축재하영역에서는 45.8 %로, 60 % 압축재하영역에서는 44.9 % 수준으로 감소하였다. 압축재하영역 30 %에서는 공극압밀로 인해 탄산화 속도계수가 감소하였으나 하중의 증가에 따라 압축재하영역 60 %에서는 미세균열의 영향으로 탄산화 속도계수가 증가하였다. 또한 인장재하영역은 압축부와는 다르게 탄산화 속도계수가 선형적으로 증가하는 경향을 나타내었다.

Keywords

References

  1. Baek, C., Kim, T. W., Lee, J. J., Lee, D. Y., Han, M. C., and Han, C. G. (2017), Effect of Applying Oil on Carbonation Resistance of Normal Strength Concrete, Journal of Architectural Institute of Korea, 37(2), 783-784.
  2. Banthia, N., Biparva, A., and Mindess, S. (2005), Permeability of concrete under stress, Cement and Concrete Research, 35(9), 1651-1655. https://doi.org/10.1016/j.cemconres.2004.10.044
  3. Broomfiled, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, 1-15.
  4. Choi, S. J., Kang, S. P., Kim, S. C., and Kwon, S. J. (2015), Analysis Technique on Water Permeability in Concrete with Cold Joint considering Micro Pore Structure and Mineral Admixture, Advances in Materials Science and Engineering, 2015(610428), 1-10.
  5. Choi, Y. J., Lee, K. M., Kim, J. H., Jung, S. H., and Lee, M. K. (2006), Applicability Study of the Rapid Carbonation Test Equipment for Concrete, Journal of the Korea Concrete Institute, 18(2), 601-604.
  6. Honseini, M. Bindiganavile, V., and Banthia, N. (2009), The effect of mechanical stress on permeability of concrete: a review, Cement and Concrete Composites, 31(4), 213-220. https://doi.org/10.1016/j.cemconcomp.2009.02.003
  7. Izumi, I., Kita, D., and Maeda, H. (1986), Carbonation, Kibodang Publication, Japan, 35-88.
  8. Kermani, A. (1991), Permeability of stressed concrete, Building Research and Information, 19(6), 360-366. https://doi.org/10.1080/09613219108727156
  9. Kim, D. H., Lim, N. G., and Horiguchi, T. (2009), Effect of Compressive Loading on the Chloride Penetration of Concrete Mixed with 23. Granulated Blast Furnace Slag, Journal of the Korea Institute of Building Construction, 9(6), 71-78. https://doi.org/10.5345/JKIC.2009.9.6.071
  10. Kim, J. O., Oh, K. C., and Park, S. B. (2008), A Study on Carbonation Velocity for Concrete Structures, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(2), 163-170.
  11. Kim, S.S., Lee, J.B., Lee, J.H., and Eom, S.H. (2013), A study on carbonation resistance of NPP concrete utilizing ground granulated blast furnace slag, Proceedings of the Korea Concrete Institute, 2013(5) 97-98.
  12. KS F 2584 (2015), Standard Test Method for Accelerated Carbonation of Concrete, Korean Agency for Technology and Standards.
  13. Kwon, S. J., Park, S. S., Nam, S. H., and Cho, H. J. (2007), A Study on Survey of Carbonation for Sound, Cracked, and Joint Concrete in RC Column in Metropolitan City, Journal of the Korea Institute for Structural Maintenance and Inspection, 11(3), 116-122.
  14. Kwon, S. J., Song, H. W., Byun, K. J., and Lee, S. H. (2004), Analysis of Carbonation Behavior of Cracked Concrete in Early - Age, Journal of the Korean Society of Civil Engineers, 2004(9), 1011-1022.
  15. Kwon, S.J., Lee, B.J., and Kim, Y.Y. (2014), Concrete mix design for service life of RC structures under carbonation using genetic algorithm, Advances in Materials Science and Engineering, 2014(653753), 1-13.
  16. Lee, H. M., and Lee, Han. S. (2013), Study on the carbonation prediction of concrete using portland blast furnace cement hydration model, Journal of National Digital Science Library, 2013(7), 64-65.
  17. Lee, H. S., Yang, J. K., and Kwon, S. J. (2015), Evaluation of Changes in Composition of Cement Mortar under Carbonation, Center for Built Environment, 10(2), 205-212.
  18. Mun, J. M., and Kwon, S. J. (2016), Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions, Journal of the Korea Concrete Institute, 28(4), 481-488. https://doi.org/10.4334/JKCI.2016.28.4.481
  19. Oh, B. H. (2002), Durability Design for Carbonation in Concrete Structures, Journal of the Korea Concrete Institute, 2002(5), 30-60.
  20. Oh, K. S., and Kwon, S. J. (2017), Chloride Diffusion Coefficient Evaluation in 1 Year-Cured OPC Concrete under Loading Conditions and Cold Joint, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(5), 21-29. https://doi.org/10.11112/jksmi.2017.21.5.021
  21. Papadakis, V. G., Vayenas, C. G., and Fardis, M. N. (1991a), Fundamental modeling and experimental investigation of concrete carbonation, ACI Materials Journal, 88(4), 363-373.
  22. Papadakis, V.G., Vayenas, C.G., and Fardis, M.N. (1991b), Physical and chemical characteristics affecting the durability of concrete, ACI Materials Journal, 88(2), 186-196.
  23. Saeki, T., Ohga, H., and Nagataki, S. (1990), Change in microstructure of concrete due to carbonation, Concrete Library of JSCE, 420(13), 33-42.
  24. Song, H. W., Kown, S. J., Byun, K. J., and Park, C. K. (2006), Predicting carbonation in early-aged cracked concrete, Cement and Concrete Research, 36(5), 979-989. https://doi.org/10.1016/j.cemconres.2005.12.019
  25. Song, H.W., and Kwon, S.J. (2007), Permeability characteristics of carbonated concrete considering capillary pore structure, Cement and Concrete Research, 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
  26. Yoo, S. W., and Kwon, S. J. (2016), Effects of cold joint and loading conditions on chloride diffusion in concrete containing GGBFS, Construction and Building Materials, 115(15), 247-255. https://doi.org/10.1016/j.conbuildmat.2016.04.010
  27. Yoon, I. S. (2007), Effect of Micro-Cracks on Chloride Ions Penetration of Concrete II: Examination of Critical Crack Width, Journal of the Korea Concrete Institute, 19(6), 707-715. https://doi.org/10.4334/JKCI.2007.19.6.707