• Title/Summary/Keyword: Polymer science

Search Result 5,831, Processing Time 0.039 seconds

Electromagnetic Wave and EMF Attenuation by Shielding Materials in home appliances (가전제품 전자파 현황 및 차폐재에 의한 감쇄 효과)

  • Cho, Jae-Cheol;Park, Jae-Hwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.711-718
    • /
    • 2019
  • Spectrum analyzer and electromagnetic field meter were used to investigate the EM generation behaviour in different types of home electrical appliances. During microwave oven operation, the EM power measured at a point 30cm apart was measured in the range of 8~11mW/㎡, the strength of the low frequency magnetic field was 60~80mG and the electric field strength was measured at 150~160V/m. For smart phone wireless charging pad, it was measured at an electromagnetic power of 0.4mW/㎡, an electric field of 160 V/m and a magnetic field of 1mG at a point 10cm away. For microwave oven and wireless charging pad, if used within 10cm, the size of the electric field has been measured at a large value that exceeds the human body protection standard and may be hazardous to humans. On the other hand, home appliances such as TVs, hairdryers and refrigerators all showed very low levels of electromagnetic waves, electric fields and magnetic fields, with no harmful effects seen. For electromagnetic shielding, the metal Cu fabric and metal foil had a high level of EM shielding, while polymer films had a low EM shielding characteristic.

Preparation of Cosmeceuticals Containing Broussonetia kazinoki Extracts: Optimization Using Central Composite Design Method (닥나무 추출물이 함유된 Cosmeceuticals의 제조: 중심합성계획모델을 이용한 최적화)

  • Hong, Seheum;Park, Bo Ra;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.682-689
    • /
    • 2018
  • In this paper, the stability criteria of cosmeceuticals emulsion containing Broussonetia kazinoki extracts was established using the central composite design model. As optimization conditions of the emulsification using the central composite design model, concentrations of the emulsifier and emulsion stabilizer were used as a quantitative factor while emulsion stability index (ESI) and polydispersity index (PDI) were used as a reaction value. The targeted values of ESI and PDI were estimated as over 60% and the minimum number, respectively. Optimized concentrations of the emulsifier and emulsion stabilizer were 3.73 and 3.07 wt%, respectively, from the emulsification optimization based on ESI and PDI values. The estimated reaction values of ESI and PDI were 60% and 0.585, respectively. As concentrations of the emulsifier and emulsion stabilizer increased, the stability of the emulsion prepared tended to increase. The emulsifier was one of the most influential factors for ESI than the emulsion stabilizer. On the other hand, the PDI value was similarly affected by both the emulsion and emulsion stabilizer. The ESI of the cosmeceuticals emulsion prepared under experimental conditions deduced from the central synthesis planning model showed at least about 45% of the stability. However, all of the emulsions were separated after 4 weeks from the initial preparation. When the concentration of the emulsifier was more than 3.72 wt%, the ESI value was over 60%. Also the layer separation rate decreased with increasing the emulsion stabilizer concentration.

Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant (Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가)

  • Hong, Seheum;Zhu, Kaiyang;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.453-459
    • /
    • 2019
  • In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.

Fabrication of Poly(methyl methacrylate) Beads Monolayer Using Rod-coater and Effects of Solvents, Surfactants and Plasma Treatment on Monolayer Structure (Rod 코팅을 이용한 Poly(methyl methacrylate) 비드의 단일층 형성 및 단일층 구조에 미치는 용매, 계면활성제, 플라즈마 처리의 영향)

  • Kim, Da Hye;Ham, Dong Seok;Lee, Jae-Heung;Huh, Kang Moo;Cho, Seong-Keun
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Fabrication of monolayer is important method for enhancing physical and chemical characteristics such as light shielding and antireflection while maintaining thin film properties. In previous studies, monolayers were fabricated by various methods on small substrates, but processes were complicated and difficult to form monolayers with large area. We used rod coating equipment with a small amount of coating liquid to form a HCP (hexagonal closed packing) coating of PMMA beads on PET(poly(ethylene terephthalate)) substrate with $20cm{\times}20cm$ size. We observed that changes in morphologies of monolayers by using the solvents with different boiling points and vapor pressures, by adapting surfactants on particles and by applying plasma treatment on substrates. The coverage was increased by 20% by optimizing the coating conditions including meniscus of beads, control of the attraction - repulsion forces and surface energy. This result can potentially be applied to optical films and sensors because it is possible to make a uniform and large-scale monolayer in a simple and rapid manner when it is compared to the methods in previous studies.

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

Effect of Zeolitic Imidazolate Framework-7 in Pebax Mixed Matrix Membrane for CO2/N2 Separation (CO2/N2 분리를 위한 Pebax 혼합막에서 Zeolitic Imidazolate Framework-7의 영향)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.393-402
    • /
    • 2021
  • In this study, a mixed matrix membrane was prepared by putting the zeolitic imidazolate framework-7 (ZIF-7) synthesized in Pebax-1657 and Pebax-2533, which are representative poly(ether-b-amide), and the permeability properties of single gas such as N2 and CO2 were investigated. From the gas permeation results, in the case of N2, both the Pebax-1657/ZIF-7 and Pebax-2533/ZIF-7 mixed matrix membranes showed a similar phenomenon in which the permeability decreased with the incorporation of ZIF-7. For CO2 permeability, the tendency was slightly different depending on the type of polymer. In the Pebax-1657/ZIF-7 mixed membrane, the CO2 permeability decreased in the range of 0~3 wt% of ZIF-7, and increased at higher contents. The CO2 permeability of the Pebax-2533/ZIF-7 mixed matrix membrane gradually decreased without increasing the permeability in the range of 0~5 wt% of ZIF-7. Regarding CO2/N2 selectivity, both mixed films showed a tendency to increase with increasing the ZIF-7 content. In particular, Pebax-2533/ZIF-7 5 wt% showed the best gas permeation performance compared to other mixed matrix membrane. This is thought to be because ZIF-7 shows better compatibility with Pebax-2533 than that of Pebax-1657 and also better CO2 selective property.

Effects of Activator on Rubber Characteristics for Gasket to Lithium Ion Battery (리튬 이온 전지용 개스킷 고무 물성에 미치는 가교조제의 영향)

  • Kang, Dong-gug;Kim, Hye-young;Kang, Young-im;Hur, Byung-ki;Seo, Kwan-ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.395-399
    • /
    • 2011
  • Material of the gasket for lithium ion battery requires the chemical resistance, the electrical insulting property, the compression set, the anti-contamination level and the low temperature resistance. We compounded ethylene propylene diene monomer (EPDM), which showed widely different solubility parameter index, with adjusting the amount of metal oxide as an activator. We did long-term test and compression set against an electrolyte with consideration for operating conditions in lithium-ion battery. In these tests, we checked the physical, chemical characteristics and the effect to lithium ion battery with different kinds of activators. In case of rubber with ZnO as an activator, through 1000 h depositing test in propylene carbonate which is one of representative solvents, we could get the satisfying characteristics and result. However, $Zn^{2+}$ had eluted in the ion elution test. So, ZnO should be limited in EPDM compound for the gasket material in lithium-ion battery.

Low-voltage Pentacene Field-Effect Transistors Based on P(S-r-BCB-r-MMA) Gate Dielectrics (P(S-r-BCB-r-MMA) 게이트 절연체를 이용한 저전압 구동용 펜타센 유기박막트랜지스터)

  • Koo, Song Hee;Russell, Thomas P.;Hawker, Craig J.;Ryu, Du Yeol;Lee, Hwa Sung;Cho, Jeong Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.551-554
    • /
    • 2011
  • One of the key issues in the research of organic field-effect transistors (OFETs) is the low-voltage operation. To address this issue, we synthesized poly(styrene-r-benzocyclobutene-r-methyl methacrylate) (P(S-r-BCB-r-MMA)) as a thermally cross-linkable gate dielectrics. The P(S-r-BCB-r-MMA) showed high quality dielectric properties due to the negligible volume change during the cross-linking. The pentacene FETs based on the 34 nm-thick P(S-r-BCB-r-MMA) gate dielectrics operate below 5 V. The P(S-r-BCB-r-MMA) gate dielectrics yielded high device performance, i.e. a field-effect mobility of $0.25cm^2/Vs$, a threshold voltage of -2 V, an sub-threshold slope of 400 mV/decade, and an on/off current ratio of ${\sim}10^5$. The thermally cross-linkable P(S-r-BCB-r-MMA) will provide an attractive candidate for solution-processable gate dielectrics for low-voltage OFETs.

Synthesis and Characterization of 4-Component Polyimide Films with Various Diamine and Dianhydride Compositions (다양한 조성 변화에 따른 4성분계 폴리이미드 필름 제조와 물성분석)

  • Park, Yun Jun;Yu, Duk Man;Choi, Jong Ho;Ahn, Jeong-Ho;Hong, Young Taik
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.623-626
    • /
    • 2011
  • Various poly(amic acid)s were synthesized from PMDA/BPDA/p-PDA/ODA with different mole ratios and effectively converted into 4-component polyimide films by thermal imidization. The chemical structures and thermo-mechanical properties of polyimide films were examined using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analyzer (TGA), thermo-mechanical analyzer (TMA), dynamic mechanical analyzer (DMA) and universal tensile machine (UTM). The tensile strength, modulus, and thermal properties of polyimides films increased with the amount of rigid PMDA and p-PDA, while the elongation and moisture absorption of polyimide films increased with the amount of flexible BPDA and ODA. One of 4-component polyimide films exhibited a similar coefficient of thermal expansion (CTE) value to that of copper when it was composed of PMDA : BPDA : p-PDA : ODA with the ratio of 5 : 5 : 4 : 6. Thus, this polyimide film could be useful for a base film for flexible copper clad laminates (FCCL) of flexible printed circuit boards.

Optimization for Decolorization and UV-Absorbility of Refined Sea Buckthorn Oil Using CCD-RSM (CCD-RSM을 이용한 시벅턴 오일의 탈색공정 최적화 및 자외선 흡수능력 평가)

  • Hong, Seheum;Zheng, Yunfei;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • In this study, the adsorption decolorization process of sea buckthorn oil was carried out to verify the possibility of the sea buckthorn oil as a natural UV absorber. The optimization was carried out by using the central composite design model-response surface methodology (CCD-RSM). The response values of CCD-RSM were selected as the decolorization effect through the process, acid value after decolorization, and UV absorbance of the decolored oil at 290nm. The amount of adsorbent, temperature and time were selected as the process variables for the experiments. According to the results of CCD-RSM, the results of optimization were all consistent. The optimal conditions, which satisfy CCD-RSM statically and mathematically, were 4.32 wt.%, 134.90 ℃, and 19.8 min for the amount of adsorbent, temperature and time, respectively. The estimated response values expected under these optimal conditions values were 94.78%, 2.08 mg/g KOH, and 2.91 for the decolorization effect, acid value and UV absorbance at 290 nm, respectively. Also the average error from actual experiment for verifying the conclusions was smaller than 2%. Therefore, it was confirmed that the application of CCD-RSM to the adsorption decolorization process of sea buckthorn oil showed a very high level of acceptable results and that the sea buckthorn oil has high possibility to be used as a natural UV absorber.