Rod 코팅을 이용한 Poly(methyl methacrylate) 비드의 단일층 형성 및 단일층 구조에 미치는 용매, 계면활성제, 플라즈마 처리의 영향

김다혜^{1,3}· 함동석¹· 이재흥¹· 허강무²· 조성근^{1†}

1한국화학연구원 화학소재솔루션센터, 2충남대학교 고분자공학과, 3한국교통대학교 4D 바이오소재센터(2018년 12월 11일 접수, 2018년 12월 19일 수정, 2018년 12월 21일 채택)

Fabrication of Poly(methyl methacrylate) Beads Monolayer Using Rod-coater and Effects of Solvents, Surfactants and Plasma Treatment on Monolayer Structure

Da Hye Kim^{1,3}, Dong Seok Ham¹, Jae-Heung Lee¹, Kang Moo Huh², and Seong-Keun Cho^{1†}

^{1, †}Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea

²Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Korea

³4D Biomaterials Center, Korea national University of Transportation, Jeungpyeong, 27909, Korea (Received December 11, 2018; Revised December 19, 2018; Accepted December 21, 2018)

요 약: 균일한 단일층(monolayer)의 형성은 박막 두께에서의 특성을 유지하면서 차광, 반사방지 등의 물리적, 화학적 기능을 강화할 수 있는 중요한 수단이다. 이전 연구에서도 여러 코팅 방법으로 단일층 을 구현하였으나, 공정이 복잡하고 대면적화 하는데 어려움이 있었다. 이에 본 연구에서는 소량의 용 액으로 대면적 코팅이 가능한 로드 (rod) 코팅법을 사용하여, 20cm×20cm PET 필름 기판 위에 마이크 로미터 크기의 PMMA 비드를 가장 치밀한 형태인 HCP(hexagonal closed packing)가 되도록 코팅을 진 행하였다. 끓는점과 증기압이 다른 용매의 사용과 계면활성제의 적용, 플라즈마 처리를 통한 기판 에 너지의 변화를 통해 형성되는 단일층의 수준을 관찰하였다. 본 연구를 통해 비드의 메니스커스, 용매 와 비드의 인-척력, 표면에너지를 포함한 코팅 조건을 최적화함으로써, 최종적으로 단위면적당 비드가 차지하는 정도인 입자의 커버리지를 초기 대비 약 20% 정도 향상시켰고, 단일층에 영향을 주는 인자 들을 확인하였다. 본 결과는 기존에 연구되었던 코팅 방법에 비해 간단하고 빠르게 대면적의 단일층 (monolayer)을 형성할 수 있기 때문에, 광학필름과 센서 등 첨단 분야로의 잠재적 응용 가능성이 높다.

Abstract: Fabrication of monolayer is important method for enhancing physical and chemical characteristics such as light shielding and antireflection while maintaining thin film properties. In previous studies, monolayers were fabricated by various methods on small substrates, but processes were complicated and difficult to form monolayers with large area. We used rod coating equipment with a small amount of coating liquid to form a HCP (hexagonal closed packing) coating of PMMA beads on PET(poly(ethylene terephthalate)) substrate with 20cm×20cm size. We observed that changes in morphologies of monolayers by using the solvents with different boiling points and vapor pressures, by adapting surfactants on particles and by applying plasma treatment on substrates. The coverage was increased by 20% by optimizing the coating conditions including meniscus of beads, control of the attraction - repulsion forces and surface energy. This result can potentially be applied to optical films and sensors because it is possible to make a uniform and large-scale monolayer in a simple and rapid manner when it is compared to the methods in previous studies.

Keywords: Monolayer, Coverage, Beads, Rod coating, HCP

[†] Corresponding author: Seong-Keun Cho (chosg@krict.re.kr)

1. 서 론

박막화는 기능성 부여 등 다양한 이점 때문에 최근 코팅 분야에서 중요한 이슈로 주목받고 있다. 단일층 (monolayer)은 구형 입자가 하나의 층으로 배열되어 있 는 상태로써 물리적, 화학적 기능을 향상시킬 수 있는 중요한 수단이며[1], 박막의 형태를 보일수록 특성들을 크게 변화 시킬 수 있다고 알려져 있다[2,3]. 이 외에도 표면장력이 낮고, 빛의 간섭에 의해 착색 현상이 발생 하며, 표면적이 크기 때문에 열 방출을 향상시킨다는 장점도 있다[4].

구형 입자를 이용한 단일층의 형성을 위해서는 입자 의 커버리지 (덮임 정도)와 규칙성 (ordering)이 높아야 한다. 커버리지는 구형 입자가 기재의 면적을 채우고 있는 정도를 의미하고, 규칙성은 구형 입자들이 빈공 간을 최소화하며 촘촘하게 배열 되어 있는 정도를 의 미한다. 앞선 많은 연구에서 Fig 1. (a), (b)에서와 같이 커버리지가 우수하지만 규칙성(ordering)이 낮은 상태 의 단일층 형성이 보고되고 있다. 입자의 단일층 형성 은 물리적인 힘에 의해 주로 형성되는데, 최근 용매의 증발이 구형 입자 사이 (메니스커스)에서 곡률을 증가 시키고, 용매의 대류 형성에 의해 구형 입자를 규칙적 으로 배열시키는 연구가 진행되었다[5,6]. 구형 입자가 포함된 코팅층의 경우, 용매가 증발되기 전에 발생하 는 대류에 의해 구형 입자가 유동성을 갖게 되고, 건조 가 진행되면서 안정한 코팅층을 형성하기 위해 주변의 구형 입자들과 인력에 의해 가깝게 배열된다[7-9]. 대 류의 영향을 많이 받을 때 주변의 구형 입자와 더욱 가깝게 배열되고, 이때 한 개의 구형 입자를 여섯 개의 구형 입자가 감싸고 있는 평면적으로 가장 안정한 형 태인 육방 밀집 구조 (hexagonal closed packing, HCP) 를 이루게 된다. 육방밀집구조 (HCP)를 이룰 때, 단위 면적당 구형 입자가 차지하는 면적이 가장 크게 되고, 빈 공간이 가장 적기 때문에, 구형 입자의 단일층 형성 에서 Fig 1. (c)와 같은 HCP의 형성이 매우 중요하다 [10-13].

선행 연구에 따르면, 단일층은 크게 무기 및 유기 소 재를 이용하여 제조가 가능하고, 구형 입자의 배열을 제어함으로써 다양한 구조를 형성할 수 있다고 알려져 있다[5]. 단일층으로 구형 입자를 규칙적으로 배열하기 위해 침전, 건조, 전기 증착, 스핀코팅, 딥코팅 등의 방 법이 이용되고 있다. 이와 같은 방법은 수백 나노미터 단위부터 마이크로미터 크기의 구형 입자 배열에 적용 이 가능하지만, 플라스틱 기판 위에서 안정적인 형성 이 어렵다. 특히 HCP 형태의 단일층을 형성하는 것은 구형 입자 간의 모세관력 (capillary force)과 증발속도 [14], 기재와 구형 입자 사이의 상호작용, 용액 내

Figure 1. Concept drawing of monolayer formations of particles; (a) ordering, (b) packing, (c) hexagonal closed pack (HCP).

구형 입자의 함량[15], 코팅 속도 등 많은 요인이 관여 하기 때문에 실제로 대면적의 단일층 구현은 매우 어 렵다고 할 수 있다. 따라서 저비용과 짧은 공정시간으 로 HCP 구조를 갖는 대면적의 단일층 필름을 대량으 로 생산할 수 있는 효율적인 코팅 공정이 개발된다면 산업계에서 매우 유용하게 이용될 수 있다. 높은 광학 특성을 갖는 PMMA 구형 입자 단일층은 현재 광학필 름, 태양전지, 전자소자, 광학 저장 및 정보처리 장치, 반도체 나노 구형 입자, 센서와 같은 다양한 분야에서 활용되고 있고, 잠재적인 응용 가능성이 높아 그 범위 가 점차 확대되고 있다[16-19].

본 연구의 목적은 공정이 간단한 로드(rod) 코팅 방 법을 이용하여 PMMA 구형 입자의 HCP 단일층을 대 면적으로 빠르게 형성하고, 여기에 미치는 인자들을 확인하는 것이다. 구형 입자를 이용한 코팅층은 표면 거칠기가 크기 때문에 입자의 크기에 따라 서로 다른 광학특성을 나타낼 수 있다. 본 연구에서는 마이크로 미터 수준의 PMMA 구형 입자를 사용하여, 커버리지 와 규칙성(ordering) 양쪽을 만족하는 HCP 구조를 형성 하고자 하였다. 이를 위해 다양한 용매 사용과 계면활 성제의 적용을 통해 표면특성의 변화를 확인하고, 기 재 표면에 플라즈마 처리를 함으로서 기재의 표면 에 너지가 코팅층 형성에 미치는 영향을 조사하였다.

2

2.실험

2.1. 재료 및 시약

단일층 형성을 위한 재료로 소켄화학의 직경 3 µm poly(methyl methacrylate) (PMMA) 구형 입자를 사용하 였고, 계면활성제로 사용된 dodecyltrimethyl ammonium bromide (DTABr), Hexyltrimethyl ammonium bromide (HTABr), trimethyl ammonium bromide (TABr)은 TCI (Tokyo Chemical Industry) Co., Ltd 에서 구입하였다. Sodium dodecyl sulfate (SDS)는 sigma Aldrich 에서 판 매되는 제품을 사용하였다. 구형 입자의 분산을 위한 용매인 toluene, hexane, xylene, chloroform, anisole, acetone, tetrahydrofuren (THF), n-methylpyrrolidone (NMP), methanol, ethanol, isopropyl alcohol (IPA)은 국 내 삼전순약에서 구입하였고, DI water는 실험실의 제 정 장치를 통해 정제하여 사용하였다. 이 외에 acetic acid, dimethyl sulfoxide (DMSO)는 BASF 제품을 사용 하였다. 기재로 사용된 PET 필름은 별도로 표면 처리 를 하지 않은 2축 연신 PET (SH-40, SKC Co., Ltd)를 사용하였다.

2.2. 코팅액 제조 및 코팅방법

PMMA 구형 입자 1 g과 다양한 종류의 용매 3 g을 충분히 분산되도록 자석식 교반기를 이용하여 500 rpm 으로 5시간 이상 교반하였다. 코팅을 위해 20cm × 20 cm PET 필름을 자동 코팅 장비 (AB-1000, TQC in Netherlands)의 플레이트에 거치한 후, 이물질 제거를 위해 ethanol로 기재 표면을 가볍게 닦아 내었다. 기재 필름의 평형을 맞추고 필름의 밀림 현상을 방지하기 위하여 기재 아래에 진공을 가해주어 고정시켰으며, 추가적으로 기재가 움직이지 않도록 장비 자체의 고정 장치를 사용하였다. 이후 스포이드를 이용하여 적정량 의 코팅액을 필름 위에 적하시킨 후 10 mm/s의 속도로 로드(rod)를 이동하면서 코팅을 진행하였다. 코팅된 PMMA 비드의 표면 형상은 3차원 레이져 현미경 (VK-2000, KYENCE in Japan)으로 확인하였다.

2.3. 용매 선정

구형 입자가 용매에 따라 어떻게 배열하는지 확인하 고, 최적의 용매를 선정하기 위하여, 성질이 다른 다양 한 종류의 용매를 사용하였다. 용매는 비극성, (극성) 비양자성, (극성) 양자성 용매의 세가지 타입으로 구분 하고, 각각 5가지의 용매를 선정하여 사용하였으며, 끓 는점(boiling point, BP)과 증기압, 다양한 용해도 상수 의 차이를 변수로 비교하였다.

2.4. 계면활성제 적용

계면활성제의 종류와 함량이 코팅성에 미치는 영향 을 알아보기 위해 계면활성제와 구형 입자를 혼합하여 고형분 25 wt%의 코팅액으로 제조하였다. PMMA 구 형 입자와 계면활성제의 표면 전하를 확인하기 위해, 자석식 교반기를 이용하였고, 선정된 anisole 용매에 각 각의 재료를 1시간 분산시킨 후, 초음파분산기 (SD-300H, 성동초음파, 한국)를 사용하여 30분 동안 추 가 분산하였다. 분산된 코팅액의 제타전위 (zeta potential)는 제타 전위 측정기 (ELS-Z particle analyzer, Otsuka in Japan)로 측정하였다. 계면 활성제 함량에 따 른 효과를 확인하기 위해, 계면활성제를 구형 입자, 용 매를 포함한 총 중량 대비 0 wt%, 0.2 wr%, 1.2 wt%, 2.2 wt%, 4 wt%, 8 wt%, 16.5 wt% 의 비율로 달리하여 첨가한 후 교반하였다. 계면활성제의 소수성 길이는 분자량과 구조식으로 확인하였다.

계면활성제 첨가에 따른 코팅성은 로드 코팅을 이용 하여 PET 필름 위에 코팅을 진행한 후, 코팅된 표면을 관찰함으로써 확인하였다. 코팅 표면의 SEM (scanning electron microscopy) 이미지는 스퍼터로 120초간 백금 코팅을 진행한 후, 500배, 1500배로 확대하여 관찰하였 다. 또한 표면 형상을 3차원 레이져 현미경(VK-2000, KYENCE in Japan)을 이용하여 광학 측정법으로 분석 하였으며, 이 때 사용된 배율은 400배였다. 비드의 커 버리지는 'Image J' 프로그램을 이용하여 관찰하고 정 량화 하였다.

2.5. 표면에너지 조절

표면에너지가 코팅성에 미치는 영향을 확인하기 위 해, 롤투롤 화학기상장비(Roll-to-Roll chemical vapor deposition, CVD) (Rollcoat 500, Roth & Row in German)를 사용하였고, DC 파워소스를 이용하여 PET 기재 표면을 처리하였다. 플라즈마 파워는 각각 1000, 1500, 2000, 2500 W로 하였고, 처리 속도는 0.5, 0.7, 1.0, 1.5, 2.0 m/min, N₂O 가스 투입량은 100, 200, 400, 600 sccm (Standard cubic centimeter)으로 변화시켰다. 플라즈마 처리 직후, 기재 표면에너지 확인을 위해 접 촉각 측정기(phoneix300-T, SEO in Korea)를 이용하여 물 접촉각을 측정하였다. 계면활성제를 첨가한 25 wt% 의 코팅액을 로드 코팅장비를 이용하여 플라즈마 처리 한 PET 필름 위에 도포하였다. 표면 형상 관찰을 위해 3차원 레이져 현미경(VK-2000, KYENCE in Japan)을 이용하였고, 400배의 배율로 관찰하였다. 광학특성 분 석은 헤이즈미터 (NDH-5000, Nippon densoku in Japan) 장비와 분광기 (spectrophotometer) (U-4100, HITACHI in Japan)를 사용하였다.

3. 결과 및 고찰

3.1. 용매의 영향

구형의 고분자 비드가 용매에 따라 어떻게 배열하는 지 확인하고, 최적의 용매를 선정하기 위하여, 성질이 다른 여러 종류의 용매를 사용하였다. 용매는 비극성 (non polar), 극성 양자성 (protic polar), 극성 비양자성 (aprotic polar)의 세가지 타입으로 나누어 실험하였고, 각 용매의 끓는 점(b.p) 및 증기압(hPa) 특성은 Table 1 에 정리하였다. 끓는점 온도가 높을 수록 지정된 온도 조건에서의 증발 속도가 더 느리게 되며, 증기압은 지 정된 온도조건에서 기체가 증발하여 이루고 있는 분압 을 나타내는데, 이 값이 높을수록 용매의 증발이 더 빠 르게 이루어진다.

비극성 용매로 chloroform, hexane, toluene, xylene, anisole의 5가지를 사용하였으며, 이들 용매의 극성 용 해도 상수(δ_P)는 모두 5 (MPa)^{1/2} 이하이다. (극성) 비 양자성 용매는 해리될 때 양성자를 배출하지 않는 용 매로써 쌍극자 모멘트를 갖고 있고, 수소 용해도 상수 (δ_H)가 낮은 용매이다. 이 용매로 acetone, THF, DMF, DMSO, NMP의 5가지를 사용하였다. (극성) 양자성 용매는 해리하여 양성자를 제공하는 용매로써, 분자

Non polar	Chloroform	Hexane	Toluene	Xylene	Anisole
Boiling point (°C)	61	68	113	140	153
(hPa at 20°C)	213	176	29.1	10	3.54
5 (1) (1) (1)	17.0	14	10	17.0	17.0
OD (dispersion) (Mpa)-	17.8	14	18	17.6	17.8
δ _P (polar) (Mpa)	3.1	0	1.4	1.0	4.0
δ _H (hydrogen) (Mpa)	5.7	0	2.0	3.1	6.7
Polar (Aprotic)	Acetone	THF	DMF	DMSO	NMP
Boiling point (°C)	56	77	153	189	203
(hPa at 20°C)	245	190	3.6	0.55	0.39
6 (1	15.5	16.0	17.4	10.4	10
OD (dispersion) (Mpa)	15.5	16.8	17.4	18.4	18
δ _P (polar) (Mpa)-	10.4	5.9	13.7	16.4	12.3
δ _H (hydrogen) (Mpa)	7	8.0	11.3	10.2	7.2
Polar (protic)	Methanol	Ethanol	IPA	Water	Acetic acid
Boiling point (°C)	62	79	82	100	101
(hPa at 20°C)	130	59.5	43.2	23	15.2
δ _D (dispersion) (Mpa)	14.7	15.8	15.8	15.5	14.5
δ _P (polar) (Mpa)	12.3	8.8	6.1	16	8.0
δ _H (hydrogen) (Mpa)	22.3	19.4	16.4	42.3	13.5
	Non polar Boiling point (°C) Vapor pressure (hPa at 20°C) δ _D (dispersion) (Mpa) δ _P (polar) (Mpa) δ _H (hydrogen) (Mpa) Boiling point (°C) Vapor pressure (hPa at 20°C) δ _D (dispersion) (Mea) δ _D (dispersion) (Mea) δ _P (polar) (Mea) δ _D (dispersion) (Mea) δ _P (polar) (Mea) δ _D (dispersion) (Mea) δ _D (hydrogen) (Mea)	Non polar Chloroform Boiling point (°C) 61 Vapor pressure (hPa at 20°C) 213 δ _D (dispersion) (Mpa)- 17.8 δ _P (polar) (Mpa)- 3.1 δ _P (polar) (Mpa)- 5.7 Polar (Aprotic) Acetone Boiling point (°C) 56 Vapor pressure (hPa at 20°C) 245 δ _D (dispersion) (Mpa)- 10.4 δ _P (polar) (Mpa)- 7 Polar (protic) Methanol δ _P (polar) (Mpa)- 10.4 δ _H (hydrogen) (Mpa)- 130 δ _P (polar) (Mpa)- 425 δ _P (polar) (Mpa)- 14.7 δ _P (dispersion) (Mpa)- 14.7 δ _P (polar) (Mpa)- 14.7 δ _P (polar) (Mpa)- 12.3	Non polar Chloroform Hexane Boiling point (°C) 61 68 Vapor pressure (PPa at 20°C) 213 176 δ _D (dispersion) (Mpa) 17.8 14 δ _P (polar) (Mpa) 3.1 0 δ _H (hydrogen) (Mpa) 5.7 0 Polar (Aprotic) Acetone THF Boiling point (°C) 56 77 Vapor pressure (PPa at 20°C) 15.5 16.8 δ _P (polar) (Mpa)- 10.4 5.9 δ _D (dispersion) (Mpa)- 10.4 5.9 δ _P (polar) (Mpa)- 10.4 5.9 δ _P (polar) (Mpa)- 10.4 5.9 δ _D (dispersion) (Mpa)- 10.4 5.9 δ _H (hydrogen) (Mpa)- 130 59.5 δ _D (dispersion) (Mpa)- 14.7 15.8 δ _D (dispersion) (Mpa)- 14.7 15.8 δ _P (polar) (Mpa)- 12.3 8.8 δ _H (hydrogen) (Mpa)- 12.3 19.4	Non polar Chloroform Hexane Toluene Boiling point (°C) 61 68 113 Vapor pressure (hPa at 20°C) 213 176 29.1 Sp (dispersion) (Mpa)- 17.8 14 18 Sp (polar) (Mpa)- 3.1 0 1.4 Sh (hydrogen) (Mpa)- 5.7 0 2.0 Polar (Aprotic) Acetone THF DMF Boiling point (°C) 56 77 153 Vapor pressure (hPa at 20°C) 245 190 3.6 Sp (dispersion) (Mea)- 10.4 5.9 13.7 Sp (dispersion) (Mea)- 10.4 5.9 13.7 Sp (polar) (Mea)- 10.4 5.9 13.7 Sh (hydrogen) (Mea)- 7 8.0 11.3 Polar (protic) Methanol Ethanol IPA Boiling point (°C) 62 79 82 Vapor pressure (hPa at 20°C) 130 59.5 43.2 Sp (dispersion) (Mea)- 14.7 15.8 <td< th=""><th>Non polar Chloroform Hexane Toluene Xylene Boiling point (°C) 61 68 113 140 Vapor pressure (hPa at 20°C) 213 176 29.1 10 δ_D (dispersion) (Mpa)- 17.8 14 18 17.6 δ_P (polar) (Mpa)- 3.1 0 1.4 1.0 δ_H (hydrogen) (Mpa)- 5.7 0 2.0 3.1 Polar (Aprotic) Acetone THF DMF DMSO Boiling point (°C) 56 77 153 189 Vapor pressure (bpa at 20°C) 245 190 3.6 0.55 δ_D (dispersion) (Mea)- 10.4 5.9 13.7 16.4 δ_P (polar) (Mea)- 10.4 5.9 13.7 16.4 δ_H (hydrogen) (Mea)- 7 8.0 11.3 10.2 Polar (protic) Methanol Ethanol IPA Water Boiling point (°C) 62 79 82 100 Vapor pressure (hPa a</th></td<>	Non polar Chloroform Hexane Toluene Xylene Boiling point (°C) 61 68 113 140 Vapor pressure (hPa at 20°C) 213 176 29.1 10 δ _D (dispersion) (Mpa)- 17.8 14 18 17.6 δ _P (polar) (Mpa)- 3.1 0 1.4 1.0 δ _H (hydrogen) (Mpa)- 5.7 0 2.0 3.1 Polar (Aprotic) Acetone THF DMF DMSO Boiling point (°C) 56 77 153 189 Vapor pressure (bpa at 20°C) 245 190 3.6 0.55 δ _D (dispersion) (Mea)- 10.4 5.9 13.7 16.4 δ _P (polar) (Mea)- 10.4 5.9 13.7 16.4 δ _H (hydrogen) (Mea)- 7 8.0 11.3 10.2 Polar (protic) Methanol Ethanol IPA Water Boiling point (°C) 62 79 82 100 Vapor pressure (hPa a

Figure 2. Coverage distribution of PMMA beads according to solvent polarity.

Figure 3. Plot of average solubility parameters vs. polar solubility parameters different solvent types.

간에 수소결합을 이루고 있는 경우가 많고, δ_{H} 가 높 은 완전한 극성을 갖는 용매이다. 이 용매로는 methanol, ethanol, IPA, DI water, acetic acid 의 5가지 를 사용하였다.

우선 극성도에 따른 코팅성을 확인하고, 각각의 표 면 관찰 결과를 Fig 2. 에 나타내었다.

전반적으로 극성용매는 비극성 용매에 비해 커버리 지가 현저하게 낮았는데, 이는 코팅 후의 커버리지가 구형의 비드와 용매의 용해도 상수에 영향을 받기 때 문이다. PMMA 구형 입자의 평균 용해도 상수(δ_T)는 17.9 (MPa)^{1/2} 이며, 극성 용해도 상수(δ_P)는 6.5 (MPa)^{1/2} 이다. Fig 3.에서와 같이 실험에 사용된 모든 용매의 용해도상수를 비교해 볼 때, 더 안정적인 코팅 성을 보인 비극성 용매 그룹의 용해도 상수가 PMMA 비드와 유사한 것을 확인할 수 있다.

비드와 용매의 평균용해도상수 (δ_T)가 비슷한 경우, 용매와 용질의 상용성이 높아져 균질화되고 양호한 코 팅성을 얻을 수 있지만, 반면에 차이가 클 경우 용매와 비드가 이질화되어 코팅성이 나빠지기 때문에 결국 커

Figure 4. SEM images of coating surface depending on whether PMMA beads are modified by surfactants. (left : $\times 500$, right : $\times 1500$) : (a) not modified PMMA beads, (b) modified with cationic surfactant, (c) modified with anionic surfactants.

버리지도 낮아지게 된다. 하지만 비극성 용매를 사용 했을 경우에도 상대적인 커버리지가 양호해진 반면, 전면적인 규칙성은 여전히 부족한 상태로 추가적인 조 치가 필요하였다. 따라서 본 연구에서는 비극성 용매 중 덮임 정도와 규칙성이 가장 좋았던 anisole을 기본 용매로 선정하고, 계면활성제와 기재의 표면 에너지 변화 실험을 추가로 진행하였다.

3.2. 계면활성제의 영향

계면활성제의 표면전하가 코팅성에 미치는 영향을 파악하기 위해 PMMA 구형입자의 표면전하와 동일한 전하를 갖는 것과 반대전하를 갖는 2가지 종류의 계면 활성제를 사용하였다. 이를 위해 우선 PMMA 구형 입 자를 용매에 분산시켜 구형 입자 자체가 갖고 있는 표 면전하를 확인하였다.

3.2.1. 계면활성제의 전하에 따른 코팅성

우선 제타 전위 분석을 통해, 실험에 사용한 PMMA 구형 입자의 표면 전하값이 - 24.32 mV로 음이온을 갖 는 것을 확인하였다. 양이온 계면활성제로 선정한 dodecyl trimethylammonium bromide (DTABr)는 표면 전하가 + 12.03 mV로 양이온을 갖고 있었고, 반면 음 이온 계면활성제인 sodium dodecyl sulfate (SDS)는 표 면 전하가 - 32.5 mV로 음이온 계면활성제임을 확인하 였다. 두가지 계면활성제는 모두 소수성을 나타내는 지방족 탄화수소의 길이가 C12로 동일하였으며, 표면 전하만 다른 특징이 있다.

Figure 5. Surface images of PMMA beads modified by different DTABr contents observed by optical microscope (a) 0 wt%, (b) 0.2 wt%, (c) 1.2 wt%, (d) 2.2 wt%, (e) 4.0 wt%, (f) 8.0 wt%, (g) 12.5 wt%, (h) 16.0 wt.

계면활성제를 첨가한 코팅액의 표면 형상을 Fig 4. 에 나타내었다. PMMA 비드와 반대전하를 갖는 양이 온계 계면활성제(DTABr)를 사용했을 경우 커버리지가 다소 상승한 반면, 동일한 음이온계의 계면활성제 (SDS)를 사용할 경우에는 크랙의 폭이 넓어지면서 불 안정한 코팅성을 보였다. 계면활성제가 첨가되지 않은 코팅액에서의 비드 커버리지 (coverage)가 60.1 %인 반 면 양이온계 계면활성제인 DTABr을 적용했을 때는 커 버리지가 63.2 %로 다소 향상되었다. 이는 계면활성제 가 비드의 표면에 흡착된 후 HCP 단일층을 형성하기 위한 적절한 인-척력에 긍정적인 영향을 미치기 때문 으로 판단된다. 하지만 비드와 동일한 전하를 갖는 SDS를 사용했을 경우에는 Fig 4. (c) 에서와 같이 크랙 의 폭이 넓어지면서 커버리지가 42.7%로 현저하게 저 하되는 것이 확인되었다. 이는 비드와 동일한 전하를 갖는 계면활성제가 입자 사이의 반발력을 높이고, 입 자의 배열과 규칙성을 파괴하여 빈공간을 넓혀서 크랙 의 형성에 도움을 주었기 때문으로 생각된다.

이런 실험결과를 바탕으로, PMMA 비드와 반대 전 하를 띄는 계면활성제를 사용할 경우, 적절한 인-척력 에 의하여 비드 코팅층의 커버리지가 향상되고, 단일 층 형성에 효과적임을 알 수 있다.

Figure 6. Changes of coverage of PMMA bead layers as a function of surfactant contents.

Figure 7. Concept drawing of particle surface charge and inter-particular attraction depending on surfactant contents.

3.2.2. 계면활성제 함량에 따른 코팅성

구형 입자와 반대 전하를 갖는 계면활성제 (DTABr) 의 함량이 규칙성과 커버리지에 미치는 영향을 확인하 기 위해 계면활성제의 함량별 실험을 진행하였다. DTBAr의 함량은 용액의 총 중량 비로 계산하였고, 0.2 wt%의 소량부터 16.0 wt%의 과량까지 비율을 변경하 면서 실험하였다.

Fig 5.에 나타낸 표면 형상에서, DTABr을 소량 첨가 할 경우 계면활성제의 역할을 제대로 하지 못하여 커 버리지가 큰 차이를 보이지 않았지만, 함량이 약 8 wt%에서 가장 좋은 코팅성을 보였으며, 이 때의 커버 리지는 약 5% 정도 증가하였다. 그러나 DTABr 이 10% 이상 과량으로 첨가될 때는, 계면활성제가 구형 입자 의 표면에 전부 흡착되지 못하고 용매에 녹아있게 되 어, 전반적인 코팅성을 악화시키고, 비드의 커버리지를 현저하게 저하시켰다. DTABr의 첨가량에 따른 커버리 지 변화는 Fig 6. 에 나타내었다. 결론적으로 비드의 배 열에 효과적인 양전하를 갖는 계면활성제를 사용하더 라도 적정한 첨가량의 범위에서만 긍정적인 효과를 보 였고, 8 wt%의 함량에서 최적의 효과를 얻을 수 있었 다.

3.3. PET 기재의 표면 에너지 조절

알려진 것처럼, 기재의 표면에너지는 코팅층의 부착 성과 코팅 평활성에 많은 영향을 준다. 플라즈마 처리 는 반응 가스를 주입한 후 방전시킬 때, 여기에서 생성 된 전자와 이온들이 기재 표면에 충돌하면서 기재의 표면에 여러 기능기들을 생성시키는 원리를 가지며, 이렇게 생성된 기능기는 코팅액들과 정전기적 상호 작 용을 유발하여 코팅액의 젖음성에 영향을 주게 된다. 본 실험에서의 표면 에너지는 기재와 구형 입자와의 인력으로도 볼 수 있는데, 표면 에너지가 낮을 경우 구 형의 PMMA 비드가 기재에 고착되지 못하고 쉽게 박 리되지만, 표면 에너지가 높을 경우 코팅액과 기판 사 이의 인력이 높아지게 되어 비드의 기재 밀착성이 향 상된다.

플라즈마 처리 공정에서 여러가지 변수들을 조절할 수 있지만, 본 실험에서는 플라즈마의 파워(강도)와 처 리 속도 (기판의 이동속도), 투입 가스량으로 설정하였 다. 일반적으로 플라즈마의 파워가 높아질수록 표면에 더 많은 기능기가 형성되어 부착성이 높아지고, 유사 한 이유로 플라즈마 처리 속도가 느릴수록 단위 면적 당 처리 시간이 길어지게 되어 부착성이 향상된다. 또 한 반응 가스의 투입량을 증가시킬수록 전자 발생량이 많아져서 부착력에 긍정적인 효과를 주는 것으로 알려 져 있다.

실험결과, Fig 8. 에서 보듯이 플라즈마 처리 속도를

Figure 8. Variation of the coverage as a function of water contact angle of PET surface.

0.5부터 2.0 m/min까지 증가시키고, N₂O 가스의 투입 량을 100~600 sccm 으로 변화시킴에 따라, 접촉각에 따른 커버리지의 변화가 유의미하게 확인되지 않았다. 하지만 플라즈마의 파워를 1kW에서 2.5kW로 증가시 키면서 접촉각이 23도에서 0도 가까이 낮아졌고, 코팅 층의 커버리지도 73 %에서 최대 79 %까지 선형적으로 증가하는 것이 확인되었다. 이는 플라즈마 처리를 하 지 않은 PET 필름기재와 비교할 때 최대 16 % 정도 증가된 결과이다. 플라즈마를 처리하지 않은 기재필름 과 처리한 기재의 물 접촉각을 비교한 결과, 플라즈마 가 처리되지 않은 필름은 66.9°인 반면, 플라즈마 처리 된 기재는 공정 변수에 따라 접촉각이 0°~30° 안에 위 치하며 표면에너지가 급격히 상승하였다.

Fig 9. 의 광학 현미경 결과에서도 물 접촉각이 낮아 지면서 비드의 커버리지가 높아지는 경향을 관찰할 수 있었고, 따라서 기재의 표면에너지와 구형 PMMA 비 드의 안정적인 배열 사이에는 직접적인 상관관계가 있 음이 확인되었다. 이는 플라즈마 처리를 통해 높아진 기재의 표면 에너지가 기재와 비드의 인력을 향상시키 고, 코팅막이 건조될 때 비드의 대류를 억제하여 크랙 을 줄여주기 때문으로 생각된다.

3.4. 광학 특성

본 연구에서 주요 변수로 적용된 용매. 계면활성제, 플라즈마 처리에 따른 각 코팅층의 광학 특성을 비교 분석하고, 결과를 Fig 10. 에 나타내었다.

탁도 측정기(헤이즈미터)를 사용하여 평행투과율 (parallel transmittance)을 측정한 결과, PMMA 비드의 단일층 형성에 가장 좋은 효과를 주었던 anisole 용매의 사용을 기본으로 커버리지를 높이는 조건들이 한가지

Figure 9. Surface morphologies of PMMA beads on various PET substrates according to plasma treatment conditions observed by optical microscope. (a) on bare PET, (b) on plasma treated PET by N_2O Gas flow of 400 sccm, (c) on plasma treated PET by line speed of 1.0 m/min, (d) on plasma treated PET by power of 2500W.

씩 추가될수록 평행 투과도가 빠르게 감소하였다. 반 면 커버리지가 향상되는 조건들이 많아질수록 헤이즈 (탁도)는 증가하였고, 반사율은 1 % 내의 범위에서 큰 변화를 보이지 않았다. 커버리지가 높을수록 헤이즈는 증가하고 평행 투과율 (parallel transmittance)이 감소하 는 경향으로 보아 비드의 단일층이 보다 완벽해질수록 확산 투과율 (diffusion transmittance)이 증가하는 것을 알 수 있다. 즉, 구형의 PMMA 비드를 이용하여 단일 층을 형성할 때, 단일층의 형성 정도는 탁도 측정기로 관찰된 광학특성과 밀접한 상관관계가 있고, 규칙적인 단일층 형성의 측정 지표로 활용이 가능하다.

4. 결 론

본 연구에서는 간단하고 빠른 로드(rod) 코팅법을 이 용하여 PET 필름 위에 PMMA 구형 입자를 단일층으 로 형성하고자 하였고, 치밀한 단일층 형성에 영향을 미치는 여러 인자들을 조사하였다. 우선 다양한 종류 의 용매를 비교한 결과, 구형 PMMA 비드와 용해도 상 수가 유사한 비극성의 anisole 용매를 사용하였을 때, 비교적 우수한 규칙성과 커버리지 (coverage)를 보였 다. 하지만 코팅층이 건조되는 동안 용매의 대류와 함 께 크랙이 많이 발생하였고, 이를 개선하기 위해 추가 로 계면활성제를 적용한 실험을 진행하였다. 구형 비 드와 반대의 전하를 띄는 계면활성제를 사용하였을 때 반데르발스 힘 (wan der waals force)에 의해 크랙의 사

7

Figure 10. Optical properties of PET films coated with PMMA beads. (a) changes of parallel transmittance and haze according to process conditions, (b) reflectance spectra according to process conditions.

이즈가 다소 감소하여 커버리지가 약 7%정도 향상되 었고, 이 때 최적의 효과를 갖는 계면활성제의 첨가량 은 약 8wt%였다. 마지막으로 기재 표면을 플라즈마로 처리할 경우 표면 에너지가 증가하고 코팅액의 젖음 성이 높아지면서, 미처리 조건과 비교할 때 커버리지 가 약 16 %까지 향상된 결과를 얻었다. 이 결과들을 바탕으로, 마이크로미터 사이즈의 구형 PMMA 비드 를 PET 기재 위에 단일층 (monolayer)으로 형성하기 위해서는 기재의 표면에너지 조절이 가장 중요하였 고, 이 외에도 용해도 상수를 고려한 적절한 용매의 사용과 표면전하를 조절한 계면활성제의 적용도 입자 의 균질한 배열에 유의미한 영향을 미치고 있었다. 본 연구에서 확인된 코팅 인자들은 다른 구형 입자들의 단일층 (monolayer) 형성을 위한 연구에도 유용하게 적 용될 수 있다.

References

1. Sangmoo Jeong, Liangbing Hu, Hye Ryung lee, Eric Garnett, Jang wook choi, Yi Cul, Nano letter, 10,

2989 (2010)

- Metin Sitti, Ronald S. Fearing, Journal of Adhesion Science and Technology, 17, 1055 (2003)
- Jiaxing Huang, Franklin Kim, Andrea R. Tao, Stephen Connor, Peidong Yang, Nature Materials, 4, 896 (2005)
- Pilsung Pack, Preparation and Properties of Highlyordered Macroporous Silica Films with Monolayer, Changwon National University, 1-68 (2004)
- 5. Jung Min Lee, In Woo Cheong,; Jung Hyun Kim, Applied Chemistry, **8**, 438 (2004)
- 6. In Woo Cheong, Jung Min Lee, Jung Hyun Kim, Polymer Science and Technology, **15**, 48. (2004)
- Peyer A. Kralchevsky, Kuniaki Nagayama, Langmuir, 10, 23-36. (1994)
- Hailin Cong, Weixiao Cao, Langmuir, 19, 8177 (2003)
- Peter A. Kralchevsky, Nikolai D. Denkov, Current Opinion in Colloid & Interface Science, 6, 383 (2001)
- Jian Chena, Peitao Donga, Di Di, Chaoguang Wang, Haoxu Wang, Junfeng Wang, Xuezhong Wu, Applied Surface Science, 270, 6. (2013)
- Y. Wang, L. Chena, H. Yang, Q. Guoc, W. Zhou, M. Tao, Solar Energy Materials and Solar Cells, 93, 85. (2009)
- Takashi Ogia, Luis Balam Modesto-Lopezb, Ferry Iskandara, Kikuo Okuyama, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297, 71 (2007)
- Young Gun Ko, Dong Hun Shin, Gil Sun Lee, Ung Su Choi, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385, 188 (2011)
- 14. Wang. Y, Chen. L, Yang. H, Guo. Q, Zhou. W, Tao. M, Materials Science Poland, 28, 467 (2010)
- Hwayoung Ko, Hae-Weon Lee, Joo-Sun Kim, Jooho Moon, Journal of the Korean Ceramic Society, 39, 981 (2002)
- S. Rakers, L. F. Chi, H. Fuchs, Langmuir, 13, 7121 (1997)
- Antony S. Dimitrov, Tetsuya Miwa, Kuniaki Nagayama, Langmuir, 15, 5257 (1999)
- Hwa-young Ko, Hae-Weon Lee, Jooho Moona, Thin Solid Films, 447 (2004)
- 19. P. Yimsiri, M.R. Mackley, Chemical Engineering Science, **61**, 3496 (2006)
- 20. R.A. Weiss, X. Zhai, A.V. Dobrynin, Langmuir, 24, 5218 (2008)