• 제목/요약/키워드: Polymer passivation

검색결과 44건 처리시간 0.028초

OLED 소자의 특성에 미치는 밀봉 버퍼용 고분자박막의 영향 (The Effect of Polymer Thin Film for Sealing Buffer on the Characteristics of OLEO Device)

  • 이봉섭;주성후;양재용
    • 한국표면공학회지
    • /
    • 제41권3호
    • /
    • pp.102-108
    • /
    • 2008
  • In this paper, the LiF and polymer thin film as passivation layer have been evaporated on green OLED devices. HDPE, polyacenaphthylene, polytetrafluoroethylene, poly(2,6-dimethyl-1,4-pheneylene oxide), poly sulfone and poly(dimer-acid-co-alkyl poly-amine) have been used as polymer materials. The optical transmittance of evaporated polymer thin film was very good as an above 90% in visible range. The morphology of polymer thin film was measured by AFM. As a result of the measurement average roughness($R_a$) value of the polysulfone was very low as 2.2 nm. The green OLED devices with a structure of ITO/HIL/HTL/EML/Buffer/Al in series of various passivation films were fabricated and analyzed. It was observed that an OLED device with LiF as first passivation film has shown the good electrical and optical property, and all kind of polymer films did not influence on the I-V-L characteristics and the life time of OLED devices. Therefore, we found that polymer layer played a key role as a buffer layer between the inorganic passivation layers to relieve the stress of the inorganic layers.

Organic Passivation Material-Polyvinyl Alcohol (PVA)/Layered Silicate Nanocomposite-for Organic Thin Film Transistor

  • Ahn, Taek;Suk, Hye-Jung;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1539-1542
    • /
    • 2007
  • We have synthesized novel organic passivation materials to protect organic thin film transistors (OTFTs) from $H_2O$ and $O_2$ using polyvinyl alcohol (PVA)/layered silicate (SWN) nano composite system. Up to 3 wt% of layered silicate to PVA, very homogeneous nanocomposite solution was prepared.

  • PDF

SiNx 박막에 의한 OLED 소자의 보호막 특성 (Passivation Properties of SiNx Thin Film for OLEO Device)

  • 주성후
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.758-763
    • /
    • 2006
  • We has been studied the thin film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation properties of the passivation layer materials, we have carried out the fabrication of green light emitting diodes with ultra violet(UV) light absorbing polymer resin, $SiO_2,\;and\;SiN_x$, respectively. From the measurement results of shrinkage properties according to the exposure time to the atmosphere, we found that $SiN_x$ thin film is the best material for passivation layer. We have investigated the emission efficiency and life time of OLED device using the package structure of $OLED/SiN_x/polymer$ resin/Al/polymer resin. The emission efficiency of this OLED device was 13 lm/W and life time was about 2,000 hours, which reach 95 % of the performance for the OLED encapsulated with metal.

Enhanced Stability of Perovskite Solar Cells using Organosilane-treated Double Polymer Passivation Layers

  • Park, Dae Young;Byun, Hye Ryung;Kim, Hyojung;Kim, Bora;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1787-1793
    • /
    • 2018
  • The power conversion efficiency of perovskite solar cells has reached 23.3%. Although significant developments have been made through intensive studies, the stability issue is still challenging. Passivation of perovskite solar cells with a transparent polymer provides better stability; however, there are a few disadvantages of organic polymer such as low thermal stability, weak adhesion and the lack of water retention ability. In this work, we prepared a dual Parylene-F/C layer with 3-methacryloxypropyltrimethoxysilane, A-174, to combine the advantages of organic and inorganic materials. As a result, A-174 treated dual Parylene-F/C layer demonstrated improved passivation effects compared to a single Parylene layer due to the strong binding of Parylene and the water retention ability by $SiO_2$ formed from A-174. This synergetic effects can be expanded to the combination of other organic materials and organosilane compounds.

Thin-film passivation of the polymer EL device using parylene and its application to the passive matrix PELD system

  • Lee, Cheon-An;Jin, Sung-Hun;Jung, Keum-Dong;Lee, Jong-Duk;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.669-672
    • /
    • 2004
  • The thin-film passivation technology using the poly-para-xylylene (parylene) was applied to polymer electroluminescent devices. The fabricated device shows a good luminescent characteristic of maximum 11640 cd/$m^2$. The measured lifetime was reached up to 28 hours, which means the effectiveness of the passivation. Applying the parylene thin-film passivation technique, 10${\times}$10 passive matrix display system was implemented and obtained some still images.

  • PDF

Polymer Passivation Effect on Methylammonium Lead Halide Perovskite Photodetectors

  • Kim, Hyojung;Byun, Hye Ryung;Kim, Bora;Kim, Sung Hyuk;Oh, Hye Min;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1675-1678
    • /
    • 2018
  • Methylammonium lead halide ($MAPbI_3$) perovskites are considered as promising materials owing to their excellent optical and electrical properties. However, perovskite materials suffer from degradation in air, which limits their practical applications. Here, we demonstrate successful passivation of the $MAPbI_3$ photodetectors through monochloro-para-xylylene (Parylene-C) deposition. The time-dependent photocurrent characteristics were systematically investigated, and we achieved significantly improved device performance and stability with Parylene-C passivation. Based on the excitation-power-dependent photoluminescence (PL) data, we confirmed that Parylene-C can reduce the carrier losses in $MAPbI_3$, leading to the enhancement of photocurrent and PL in $MAPbI_3$ photodetectors.

이온전도성 Poly(ethylene oxide) 고분자 전해질과 Li과의 계면에 미치는 가소제 및 Zeolite의 첨가효과 (The Effect of Plasticizer and Zeolite Addition on the Interface between Polymer Electrolyte Based on Poly(ethylene oxide) and Li Electrode.)

  • 김종욱;구할본;진봉수;문성인;윤문수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.205-208
    • /
    • 1994
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. PEO-$LiClO_4$ electrolyte with plasticizer is very unstable. Passivation phenomena in polymer electrolyte cell was described by the SPL model. The time dependance of the impedance indicates that a passivation layer grows rapidly on the Li surface. However, the growing of passivation layer on the Li surface can be restrained by addition of zeolite to the PEO electrolyte. It suggested that addition of zeoliteto to the PEO-$LiClO_4$ electrolyte effectively controls the formation of a passivation layer on Li electrode.

  • PDF

유기 패시베이션 박막이 P3HT:PC61BM 활성층을 갖는 고분자 태양전지의 특성에 미치는 영향 (Effects of Organic Passivation Films on Properties of Polymer Solar Cells with P3HT:PC61BM Active Layers)

  • 이상희;박병민;조양근;장호정;정재진;피재호
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.105-110
    • /
    • 2014
  • 재생에너지 광소자로서 스마트 농장 등의 에너지원으로서 고분자 태양전지의 응용이 기대되며 향후 상업화를 위해 효율과 신뢰성 개선이 요구된다. 본 연구에서는 유기 패시베이션 박막을 가지는 헤테로정션 고분자태 전지를 제작하고, 패시베이션 박막이 고분자 태양전지의 특성에 미치는 영향을 조사하였다. 사용된 패시베이션 유기재료로는 폴리비닐알코올과 이크롬산 암모늄을 혼합하여 용해한 후 스핀코팅방법으로 P3HT:$PC_{61}BM$/LiF/Al 기판위에 코팅하여 소자를 제작하였다. 제작된 소자구조는 glass/ITO/PEDOT:PSS/P3HT:$PC_{61}BM$/LiF/Al/passivation layer 이며, 140시간 공기 중에 노출 후 전기적 특성을 측정, 비교한 결과, 패시베이션 처리된 고분자 태양전지가 패시베이션 박막 처리되지 않은 소자에 비해 보다 우수한 전기적 특성을 보여주었다. 즉, 패시베이션 처리된 소자의 전력변환효율은 제작직후 3.0%에서 140시간 노출 후 1.3%로 감소한 반면 패시베이션 처리되지 않은 소자의 경우는 동일한 노출조건에서 3.5%에서 0.1%로 급격한 특성저하를 나타내었다.

질화갈륨계 고전자이동도 트랜지스터에 대한 불소계 고분자 보호막의 영향 (Influence of Perfluorinated Polymer Passivation on AlGaN/GaN High-electron-mobility Transistors)

  • 장수환
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.511-514
    • /
    • 2010
  • 불소계 고분자 물질인 $Cytop^{TM}$ 박막을 간단하고 경제적인 스핀코팅 방법을 이용하여 반도체 표면에 선택적으로 형성시킨 후, AlGaN/GaN HEMT 소자의 반도체 보호막(passivation layer)으로써 활용가능성을 고찰하기 위하여 전기적 특성이 분석되었다. $Cytop^{TM}$ 보호막이 적용된 AlGaN/GaN HEMT 소자와 적용되지 않은 소자의 게이트 래그 특성이 비교되었다. 보호막이 적용된 소자는 dc 대비 65%의 향상된 펄스 드레인 전류를 보였다. HEMT 소자의 rf 특성이 측정되었으며, $Cytop^{TM}$ 박막이 적용된 소자는 PECVE $Si_3N_4$ 보호막이 적용된 소자와 유사한 소자 특성을 나타냈다. 이는 게이트와 드레인 사이에 존재하는 표면상태 트랩의 보호막에 의한 감소에 의한 것으로 판단된다.

양의 액정을 이용한 FFS모드에서 유전층 두께에 따른 전기광학적 특성 연구 (Passivation Thickness Dependent Electro-Optic Characteristics of the Fringe Field Switching (FFS) Mode using the Liquid Crystal with Positive Dielectric Anisotropy)

  • 정준호;박지웅;안영주;김미영;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.53-54
    • /
    • 2008
  • We have studied electro-optic characteristics as a function of passivation thickness$(t_p)$ in the fringe-field swiching (FFS) mode using the LC with positive dielectric anisotropy. When $t_p$ is increased from $0.29{\mu}m$ to $3.0{\mu}m$, a maximum transmittance is slightly increased to $2{\mu}m$. However, operating voltage is continuously increased up to above 11v. We found that the tilt angle is decreased between the edge of pixel electrode and the center of each pixel electrode. In the FFS mode using the liquid crystal with positive dielectric anisotropy, transmittance is affected by the tilt angle. When tilt angle is increased, transmittance become decrease. Therefore, in the FFS device, a low tilt angle is favored for high transmittance. It is demonstrated that the suitable passivation thickness make a tilt angle decreased.

  • PDF