DOI QR코드

DOI QR Code

Enhanced Stability of Perovskite Solar Cells using Organosilane-treated Double Polymer Passivation Layers

  • Park, Dae Young (Department of Energy Science, Sungkyunkwan University) ;
  • Byun, Hye Ryung (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Hyojung (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Bora (Department of Energy Science, Sungkyunkwan University) ;
  • Jeong, Mun Seok (Department of Energy Science, Sungkyunkwan University)
  • Received : 2018.10.10
  • Accepted : 2018.10.22
  • Published : 2018.11.30

Abstract

The power conversion efficiency of perovskite solar cells has reached 23.3%. Although significant developments have been made through intensive studies, the stability issue is still challenging. Passivation of perovskite solar cells with a transparent polymer provides better stability; however, there are a few disadvantages of organic polymer such as low thermal stability, weak adhesion and the lack of water retention ability. In this work, we prepared a dual Parylene-F/C layer with 3-methacryloxypropyltrimethoxysilane, A-174, to combine the advantages of organic and inorganic materials. As a result, A-174 treated dual Parylene-F/C layer demonstrated improved passivation effects compared to a single Parylene layer due to the strong binding of Parylene and the water retention ability by $SiO_2$ formed from A-174. This synergetic effects can be expanded to the combination of other organic materials and organosilane compounds.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. C. J. Rhodes, Science Progress 93, 37 (2010). https://doi.org/10.3184/003685010X12626410325807
  2. D. Shi et al., Science 347, 519 (2015). https://doi.org/10.1126/science.aaa2725
  3. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Science 347, 967 (2015). https://doi.org/10.1126/science.aaa5760
  4. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science 342, 341 (2013). https://doi.org/10.1126/science.1243982
  5. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. TW. Wang, S. D. Stranks, H. J. Snaith and R. J. Nicholas, Nature Physics 11, 582 (2015). https://doi.org/10.1038/nphys3357
  6. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger and A. W. Y. Ho-Baillie, Progress in Photovoltaics: Research and Applications 26, 3 (2018).
  7. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society 131, 6050 (2009). https://doi.org/10.1021/ja809598r
  8. S. Seo, S. Jeong, C. Bae, N-G. Park and H. Shin, Advanced Materials 30, 1801010 (2018). https://doi.org/10.1002/adma.201801010
  9. F. Bella, G. Griffini, J-P. Correa-Baena, G. Saracco, M. Gratzel, A. Hagfeldt, S. Turri and C. Gerbaldi, Science 354, 203 (2016). https://doi.org/10.1126/science.aah4046
  10. I. Hwang, I. Jeong, J. Lee, M. J. Ko and K. Yong, ACS applied materials & interfaces 7, 17330 (2015). https://doi.org/10.1021/acsami.5b04490
  11. J. You et al., Nature nanotechnology 11, 75 (2016). https://doi.org/10.1038/nnano.2015.230
  12. J. Lee, M. M. Menamparambath, J. Y. Hwang and S. Baik, ChemSusChem 8, 2358 (2015). https://doi.org/10.1002/cssc.201403462
  13. M. Saliba et al., Energy & environmental science 9, 1989 (2016). https://doi.org/10.1039/C5EE03874J
  14. N-G. Park, Materials today 18, 65 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
  15. N. Marinova, S. Valero and J. L. Delgado, Journal of colloid and interface science 488, 373 (2017). https://doi.org/10.1016/j.jcis.2016.11.021
  16. D. P. McMeekin et al., Science 351, 151 (2016). https://doi.org/10.1126/science.aad5845
  17. A. A. Zhumekenov et al., ACS Energy Letters 1, 32 (2016). https://doi.org/10.1021/acsenergylett.6b00002
  18. L. K. Massey, Permeability properties of plastics and elastomers: a guide to packaging and barrier materials (William Andrew, 2003).
  19. A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin and M. Graatzel, Chemistry of Materials 26, 6160 (2014). https://doi.org/10.1021/cm502468k
  20. S. Diaham, M. Bechara, M-L. Locatelli and C. Tenailleau, Journal of electronic materials 40, 295 (2011). https://doi.org/10.1007/s11664-010-1414-y
  21. D. Mathur, G. Yang and T. Lu, Journal of materials research 14, 246 (1999). https://doi.org/10.1557/JMR.1999.0036
  22. M. Shirayama et al., Journal of Applied Physics 119, 115501 (2016). https://doi.org/10.1063/1.4943638
  23. H. T. Kim, C-D. Kim, S-Y. Lee and Y-S. Sohn, Molecular Crystals and Liquid Crystals 618, 139 (2015). https://doi.org/10.1080/15421406.2015.1076330

Cited by

  1. ORGANIC-INORGANIC PEROVSKITE CH3NH3PbI3: MORPHOLOGICAL, STRUCTURAL AND PHOTOELECTROPHYSICAL PROPERTIES vol.85, pp.9, 2019, https://doi.org/10.33609/0041-6045.85.9.2019.31-41
  2. Crystalline Clear or Not: Beneficial and Harmful Effects of Water in Perovskite Solar Cells vol.20, pp.20, 2018, https://doi.org/10.1002/cphc.201900393
  3. Enhanced Stability of MAPbI3 Perovskite Solar Cells using Poly(p-chloro-xylylene) Encapsulation vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-51945-9
  4. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies vol.5, pp.1, 2020, https://doi.org/10.1063/1.5133653
  5. Chemically Tunable Organic Dielectric Layer on an Oxide TFT: Poly(p-xylylene) Derivatives vol.13, pp.36, 2018, https://doi.org/10.1021/acsami.1c13865
  6. Decoding the charge carrier dynamics in triple cation-based perovskite solar cells vol.5, pp.24, 2018, https://doi.org/10.1039/d1se01398j
  7. Analysis of performance parameters during degradation of triple-cation-based organic–inorganic hybrid perovskite solar cells vol.135, pp.None, 2022, https://doi.org/10.1016/j.inoche.2021.109094