Browse > Article
http://dx.doi.org/10.3938/jkps.73.1675

Polymer Passivation Effect on Methylammonium Lead Halide Perovskite Photodetectors  

Kim, Hyojung (Department of Energy Science, Sungkyunkwan University)
Byun, Hye Ryung (Department of Energy Science, Sungkyunkwan University)
Kim, Bora (Department of Energy Science, Sungkyunkwan University)
Kim, Sung Hyuk (Department of Energy Science, Sungkyunkwan University)
Oh, Hye Min (Department of Energy Science, Sungkyunkwan University)
Jeong, Mun Seok (Department of Energy Science, Sungkyunkwan University)
Abstract
Methylammonium lead halide ($MAPbI_3$) perovskites are considered as promising materials owing to their excellent optical and electrical properties. However, perovskite materials suffer from degradation in air, which limits their practical applications. Here, we demonstrate successful passivation of the $MAPbI_3$ photodetectors through monochloro-para-xylylene (Parylene-C) deposition. The time-dependent photocurrent characteristics were systematically investigated, and we achieved significantly improved device performance and stability with Parylene-C passivation. Based on the excitation-power-dependent photoluminescence (PL) data, we confirmed that Parylene-C can reduce the carrier losses in $MAPbI_3$, leading to the enhancement of photocurrent and PL in $MAPbI_3$ photodetectors.
Keywords
Perovskite; Parylene-C; Polymer passivation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. H. Shin, J. H. Heo and S. H. Im, J. Korean Phys. Soc. 71, 593 (2017).   DOI
2 H. Lee, S. Rhee, J. Kim, C. Lee and H. Kim, J. Korean Phys. Soc. 69, 406 (2016).   DOI
3 M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photon. 8, 506 (2014).   DOI
4 G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Energy Environ. Sci. 7, 982 (2014).   DOI
5 R. J. Sutton et al., Adv. Energy Mater. 6, 1502458 (2016).   DOI
6 C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, Adv. Mater. 26, 1584 (2014).   DOI
7 E. Horvath et al., Nano Lett. 14, 6761 (2014).   DOI
8 G. Wang et al., Sci. Adv. 1, e1500613 (2015).   DOI
9 W. Deng et al., Adv. Mater. 28, 2201 (2016).   DOI
10 H. Wang et al., ACS Nano 10, 10921 (2016).   DOI
11 J. Liu et al., ACS Nano 10, 3536 (2016).   DOI
12 L. Dou et al., Nat. Commun. 5, 5404 (2014).   DOI
13 W. Wang, Y. Ma and L. Qi, Adv. Funct. Mater. 27, 1603653 (2017).   DOI
14 S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie and G. Shi, Adv. Mater. 28, 5969 (2016).   DOI
15 A. Waleed et al., Nano Lett. 17, 523 (2017).   DOI
16 C-J. Teng, D. Xie, M-X. Sun, S. Chen, P. Yang and Y-L. Sun, ACS Appl. Mater. Interfaces 8, 31289 (2016).   DOI
17 M. A. Spivack and G. Ferrante, J. Electrochem. Soc. 116, 1592 (1969).   DOI
18 Y. Guo, C. Liu, H. Tanaka and E. Nakamura, J. Phys. Chem. Lett. 6, 535 (2015).   DOI
19 J-H. Lee and A. Kim, Org. Electron. 47, 147 (2017).   DOI
20 Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu and N. P. Padture, J. Mater. Chem. A 3, 8178 (2015).   DOI
21 X. Lao et al., Nanoscale 10, 9949 (2018).   DOI
22 H. R. Byun, D. Y. Park, H. M. Oh, G. Namkoong and M. S. Jeong, ACS Photonics 4, 2813 (2017).   DOI
23 H. Y. Choi et al., AIP Conf. Proc. 1399, 543 (2011).
24 F. Wang, S. Bai, W. Tress, A. Hagfeldt and F. Gao, npj Flexible Electron. 2, 22 (2018).   DOI