Browse > Article
http://dx.doi.org/10.3938/jkps.73.1787

Enhanced Stability of Perovskite Solar Cells using Organosilane-treated Double Polymer Passivation Layers  

Park, Dae Young (Department of Energy Science, Sungkyunkwan University)
Byun, Hye Ryung (Department of Energy Science, Sungkyunkwan University)
Kim, Hyojung (Department of Energy Science, Sungkyunkwan University)
Kim, Bora (Department of Energy Science, Sungkyunkwan University)
Jeong, Mun Seok (Department of Energy Science, Sungkyunkwan University)
Abstract
The power conversion efficiency of perovskite solar cells has reached 23.3%. Although significant developments have been made through intensive studies, the stability issue is still challenging. Passivation of perovskite solar cells with a transparent polymer provides better stability; however, there are a few disadvantages of organic polymer such as low thermal stability, weak adhesion and the lack of water retention ability. In this work, we prepared a dual Parylene-F/C layer with 3-methacryloxypropyltrimethoxysilane, A-174, to combine the advantages of organic and inorganic materials. As a result, A-174 treated dual Parylene-F/C layer demonstrated improved passivation effects compared to a single Parylene layer due to the strong binding of Parylene and the water retention ability by $SiO_2$ formed from A-174. This synergetic effects can be expanded to the combination of other organic materials and organosilane compounds.
Keywords
Perovskite solar cell; Double polymer passivation; Adhesion promoter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. J. Rhodes, Science Progress 93, 37 (2010).   DOI
2 D. Shi et al., Science 347, 519 (2015).   DOI
3 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Science 347, 967 (2015).   DOI
4 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science 342, 341 (2013).   DOI
5 A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. TW. Wang, S. D. Stranks, H. J. Snaith and R. J. Nicholas, Nature Physics 11, 582 (2015).   DOI
6 M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger and A. W. Y. Ho-Baillie, Progress in Photovoltaics: Research and Applications 26, 3 (2018).
7 A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society 131, 6050 (2009).   DOI
8 S. Seo, S. Jeong, C. Bae, N-G. Park and H. Shin, Advanced Materials 30, 1801010 (2018).   DOI
9 F. Bella, G. Griffini, J-P. Correa-Baena, G. Saracco, M. Gratzel, A. Hagfeldt, S. Turri and C. Gerbaldi, Science 354, 203 (2016).   DOI
10 I. Hwang, I. Jeong, J. Lee, M. J. Ko and K. Yong, ACS applied materials & interfaces 7, 17330 (2015).   DOI
11 J. You et al., Nature nanotechnology 11, 75 (2016).   DOI
12 J. Lee, M. M. Menamparambath, J. Y. Hwang and S. Baik, ChemSusChem 8, 2358 (2015).   DOI
13 M. Saliba et al., Energy & environmental science 9, 1989 (2016).   DOI
14 N-G. Park, Materials today 18, 65 (2015).   DOI
15 N. Marinova, S. Valero and J. L. Delgado, Journal of colloid and interface science 488, 373 (2017).   DOI
16 D. P. McMeekin et al., Science 351, 151 (2016).   DOI
17 A. A. Zhumekenov et al., ACS Energy Letters 1, 32 (2016).   DOI
18 L. K. Massey, Permeability properties of plastics and elastomers: a guide to packaging and barrier materials (William Andrew, 2003).
19 A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin and M. Graatzel, Chemistry of Materials 26, 6160 (2014).   DOI
20 S. Diaham, M. Bechara, M-L. Locatelli and C. Tenailleau, Journal of electronic materials 40, 295 (2011).   DOI
21 D. Mathur, G. Yang and T. Lu, Journal of materials research 14, 246 (1999).   DOI
22 M. Shirayama et al., Journal of Applied Physics 119, 115501 (2016).   DOI
23 H. T. Kim, C-D. Kim, S-Y. Lee and Y-S. Sohn, Molecular Crystals and Liquid Crystals 618, 139 (2015).   DOI