• Title/Summary/Keyword: Polymer memory

Search Result 117, Processing Time 0.021 seconds

New nonvolatile unit memory cell and proposal peripheral circuit using the polymer material (폴리머 재료를 이용한 새로운 비휘발성 단위 메모리 셀과 주변회로 제안)

  • Kim, Jung-Ha;Lee, Sang-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.825-828
    • /
    • 2005
  • In this paper, we propose a new nonvolatile unit memory cell and proposal peripheral circuit using the polymer material. Memory that relies on bistable behavior- having tow states associated with different resistances at the same applied voltage - has attracted much interest because of its nonvolatile properties. Such memory may also have other merits, including simplicity of structure and manufacturing, and the small size of memory cells. We have plotted the load line graphs for the use of a polymer memory character, hence we have designed in the band-gap reference shape of a write/erase drive, and then designed in the 2-stage differential amplifier shape of a sense amplifier in the consideration of a low current characteristic of a polymer memory cell. The simulation result shows that is has high gain about 80dB by sensing the very small current.

  • PDF

Synthesis and Characteristics of 2 Step-curable Shape Memory Polyurethane (2단계 경화형 형상기억 폴리우레탄의 합성 및 분석)

  • Noh, Geon Ho;Lee, Seungjae;Bae, Seong-Guk;Jang, Seong-Ho;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1023-1028
    • /
    • 2018
  • Shape memory materials are widely used in high-tech industries. Although shape memory polymers have been developed, they have a disadvantage, only unidirectional resilience. Shape memory polymers with bi-directional recovery resilience have been actively studied. In this study, a bidirectional shape memory polyurethane was synthesized using poly(${\varepsilon}$-caprolactone) diol, methylene dicyclohexyl diisocyanate, and hydroxyethyl acrylate. The first physical curing occurred between hard segments and hydrogen bondings when the solution was dried. The second curing in acrylate groups was performed by UV exposure. A degree of curing was analyzed by infrared spectroscopy. The shape memory properties of 2 step-cured polyurethanes were investigated as a function of UV curing time.

Ion Gel Gate Dielectrics for Polymer Non-volatile Transistor Memories (이온젤 전해질 절연체 기반 고분자 비휘발성 메모리 트랜지스터)

  • Cho, Boeun;Kang, Moon Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.759-763
    • /
    • 2016
  • We demonstrate the utilization of ion gel gate dielectrics for operating non-volatile transistor memory devices based on polymer semiconductor thin films. The gating process in typical electrolyte-gated polymer transistors occurs upon the penetration and escape of ionic components into the active channel layer, which dopes and dedopes the polymer film, respectively. Therefore, by controlling doping and dedoping processes, electrical current signals through the polymer film can be memorized and erased over a period of time, which constitutes the transistor-type memory devices. It was found that increasing the thickness of polymer films can enhance the memory performance of device including (i) the current signal ratio between its memorized state and erased state and (ii) the retention time of the signal.

Recent Development in Polymer Ferroelectric Field Effect Transistor Memory

  • Park, Youn-Jung;Jeong, Hee-June;Chang, Ji-Youn;Kang, Seok-Ju;Park, Cheol-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.51-65
    • /
    • 2008
  • The article presents the recent research development in polymer ferroelectric non-volatile memory. A brief overview is given of the history of ferroelectric memory and device architectures based on inorganic ferroelectric materials. Particular emphasis is made on device elements such as metal/ferroelectric/metal type capacitor, metal-ferroelectric-insulator-semiconductor (MFIS) and ferroelectric field effect transistor (FeFET) with ferroelectric poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (TrFE). In addition, various material and process issues for realization of polymer ferroelectric non-volatile memory are discussed, including the control of crystal polymorphs, film thickness, crystallization and crystal orientation and the unconventional patterning techniques.

Durability of the Flexible Shape Memory Device (형상 기억 유연 소자의 내구성 평가에 관한 연구)

  • Yang, Hee-Kyung;Kim, Hae-Jin;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.2
    • /
    • pp.36-40
    • /
    • 2015
  • The demand for flexible devices including solar cells, memories and batteries has increased rapidly over the past decades. In most flexible devices, polymer-based materials are used to enable the mechanical deformations such as bending or folding. Shape Memory Polymers (SMPs) is a high molecular compound polymer with flexibility and shape recovery characteristics. In this work, flexible shape memory device was fabricated by simply coating the conducting material, carbon nano-tube (CNT), on a shape memory polymer. Furthermore, durability of the device under various type of mechanical deformations was assessed. It is believed that the result of this work will aid in realization of a stretchable and wearable electronic device for practical applications.

Deployment test of shape memory polymer specimens for space antenna design (우주 안테나 설계용 형상기억 폴리머 시편의 전개 시험)

  • Goo, Nam Seo;Le, Van Luong;An, Yongsan;Yu, Woong-Ryeol;Hwang, Jin Ok;Park, Jongkyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1007-1012
    • /
    • 2017
  • In this study, we performed the deployment test of shape memory polymer specimens for space antenna design. Poly(cyclootene) was cross-linked by dicumyl peroxide to make a PCO shape memory polymer. A miniature specimen with 120 mm diameter for a deployable antenna was fabricated with the PCO shape memory polymer. To investigate the deployment performance, the folded specimen as a temporary shape was heated by two heaters to the $15^{\circ}C$ higher temperature than the glass transition temperature of shape memory polymer. Firstly, the specimen was installed horizontally and tested. The deploying motion was captured by a digital camera and analyzed by a Tracker program. To reduce the effects of gravity, the specimen was installed vertically and tested again. The deployment performance of a shape memory polymer was investigated by comparing the results of horizontal and vertical installation tests.

Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy (형상기억합금을 이용한 지능형 고분자 복합재료의 설계)

  • Jeong, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

Effect of Physicochemical Properties of Solvents on Microstructure of Conducting Polymer Film for Non-Volatile Polymer Memory

  • Paik, Un-Gyu;Lee, Sang-Kyu;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • The effect of physicochemical properties of solvents on the microstructure of polyvinyl carbazole (PVK) film for non-volatile polymer memory was investigated. For the solubilization of PVK molecules and the preparation of PVK films, four solvents with different physicochemical properties of the Hildebrand solubility parameter and vapor pressure were considered: chloroform, tetrahydrofuran (THF), 1,1,2,2-tetrachloroethane (TCE), and N,N-dimehtylformamide (DMF). The solubility of PVK molecules in the solvents was observed by ultravioletvisible spectroscopy. PVK molecules were observed to be more soluble in chloroform, with a low Hildebrand solubility parameter, than solvents with higher values. The aggregated size and micro-/nano-topographical properties of PVK films were characterized using optical and atomic force microscopes. The PVK film cast from chloroform exhibited enhanced surface roughness compared to that from TCE and DMF. It was also confirmed that the microstructure of PVK film has an effect on the performance of non-volatile polymer memory.

Shape Memory Polymer Nanocomposites (형상 기억 고분자 나노 복합 소재)

  • Hong, Jin-Ho;Yun, Ju-Ho;Kim, Il;Shim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.188-198
    • /
    • 2010
  • The term 'shape memory polymers (SMPs)' describes a class of polymers which can remember the original shape and recover from deformed to its original shape by the applied stimuli, e.g., heat, electricity, magnetic field, light, etc. SMPs are classified as one of the 'smart polymers' and have great potentials as high-value-added materials. Especially, low thermal, electrical, and mechanical properties of SMPs can be improved by incorporating the various fillers. This paper aims to review the SMPs and their basic principles, and the trends of the development of SMPs nanocomposites.