Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.12.759

Ion Gel Gate Dielectrics for Polymer Non-volatile Transistor Memories  

Cho, Boeun (Department of Chemical Engineering, Soongsil University)
Kang, Moon Sung (Department of Chemical Engineering, Soongsil University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.12, 2016 , pp. 759-763 More about this Journal
Abstract
We demonstrate the utilization of ion gel gate dielectrics for operating non-volatile transistor memory devices based on polymer semiconductor thin films. The gating process in typical electrolyte-gated polymer transistors occurs upon the penetration and escape of ionic components into the active channel layer, which dopes and dedopes the polymer film, respectively. Therefore, by controlling doping and dedoping processes, electrical current signals through the polymer film can be memorized and erased over a period of time, which constitutes the transistor-type memory devices. It was found that increasing the thickness of polymer films can enhance the memory performance of device including (i) the current signal ratio between its memorized state and erased state and (ii) the retention time of the signal.
Keywords
Transistor-type non-volatile memory; Ion gel electrolyte; polymer semiconductor; Low voltage operation; Film thickness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications (1st ed.) (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).
2 K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, Adv. Funct. Mater., 20, 224 (2010). [DOI: https:/doi.org/10.1002/adfm.200901677]   DOI
3 W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dotz, and S. Mhaisalkar, J. Mater. Chem., 25, 8971 (2011). [DOI: https:/doi.org/10.1039/c1jm10966a]   DOI
4 R.C.G. Naber, B. D. Boer, P.W.M. Blom, and D.M.D. Leeuw, Appl. Phys. Lett., 87, 203509 (2005). [DOI: https:/doi.org/10.1063/1.2132062]   DOI
5 M. S. Kang, J. H. Cho, and S. H. Kim, Ch. 8 Electrolyte-Gating Organic Thin Film Transistors (1st ed.) (VCH Verlag GmbH & Co. KGaA, Weinheim, 2015) p. 253.
6 J. C. Scott and L. D. Bozano, Adv. Mater., 19, 1452 (2007). [DOI: https:/doi.org/10.1002/adma.200602564]   DOI
7 S. K. Hwang, T. J. Park, K. L. Kim, S. M. Cho, B. J. Jeong, and C. Park, ACS Appl. Mater. Interface, 6, 20179 (2014). [DOI: https:/doi.org/10.1021/am505750v]   DOI
8 H. Bong, W. H. Lee, D. Y. Lee, B. J. Kim, J. H. Cho, and K. Cho, Appl. Phys. Lett., 96, 192115 (2010). [DOI: https:/doi.org/10.1063/1.3428357]   DOI
9 J. S. Lee, Electron. Mater. Letter., 7, 175 (2011). [DOI: https:/doi.org/10.1007/s13391-011-0901-5]   DOI
10 K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, Adv. Mater., 18, 3179 (2006). [DOI: https:/doi.org/10.1002/adma.200601434]   DOI
11 Y. Guo, C. A. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, and Y. Liu, Adv. Mater., 21, 1954 (2009). [DOI: https:/doi.org/10.1002/adma.200802430]   DOI
12 J. Lee, S. Lee, M. H. Lee, and M. S. Kang, Appl. Phys. Lett., 106, 063302 (2015). [DOI: https:/doi.org/10.1063/1.4908187]   DOI
13 B. Cho, S. H. Yu, M. H. Lee, J. Lee, J. Y. Lee, J. H. Cho, and M. S. Kang, Org. Electron., 15, 3439 (2014). [DOI: https:/doi.org/10.1016/j.orgel.2014.09.034]   DOI
14 N. M. Murani, Y. J. Hwang, F. S. Kim, and S. A. Jenekhe, Org. Electron., 31, 104 (2016). [DOI: https:/doi.org/10.1016/j.orgel.2016.01.015]   DOI
15 Y. H. Chou, H. C. Chang, C. L. Liu, and W. C. Chen, Poly. Chem., 6, 341 (2015). [DOI: https:/doi.org/10.1039/C4PY01213E]   DOI