• Title/Summary/Keyword: Polygamma functions

Search Result 13, Processing Time 0.017 seconds

SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE GAMMA AND POLYGAMMA FUNCTIONS

  • Li, Ai-Jun;Chen, Chao-Ping
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.273-287
    • /
    • 2008
  • In this paper, some logarithmically completely monotonic, strongly completely monotonic and completely monotonic functions related to the gamma, digamma and polygamma functions are established. Several inequalities, whose bounds are best possible, are obtained.

A DEFINITE INTEGRAL FORMULA

  • Choi, Junesang
    • East Asian mathematical journal
    • /
    • v.29 no.5
    • /
    • pp.545-550
    • /
    • 2013
  • A remarkably large number of integral formulas have been investigated and developed. Certain large number of integral formulas are expressed as derivatives of some known functions. Here we choose to recall such a formula to present explicit expressions in terms of Gamma function, Psi function and Polygamma functions. Some simple interesting special cases of our main formulas are also considered. It is also pointed out that the same argument can establish explicit integral formulas for other those expressed in terms of derivatives of some known functions.

INFINITE SERIES ASSOCIATED WITH PSI AND ZETA FUNCTIONS

  • KIM, YONGSUP
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • We evaluate some interesting families of infinite series expressed in terms of the Psi (or Digamma) and Zeta functions by analyzing the well-known identity associated with $_3F_2$ due to Watson. Some special cases are also considered.

  • PDF

NEW CLASS OF INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION AND THE LOGARITHMIC FUNCTION

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.329-342
    • /
    • 2016
  • Motivated essentially by Brychkov's work [1], we evaluate some new integrals involving hypergeometric function and the logarithmic function (including those obtained by Brychkov[1], Choi and Rathie [3]), which are expressed explicitly in terms of Gamma, Psi and Hurwitz zeta functions suitable for numerical computations.

MONOTONICITY CRITERION AND FUNCTIONAL INEQUALITIES FOR SOME q-SPECIAL FUNCTIONS

  • Mehrez, Khaled
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.133-147
    • /
    • 2021
  • Our aim in this paper is to derive several new monotonicity properties and functional inequalities of some functions involving the q-gamma, q-digamma and q-polygamma functions. More precisely, some classes of functions involving the q-gamma function are proved to be logarithmically completely monotonic and a class of functions involving the q-digamma function is showed to be completely monotonic. As applications of these, we offer upper and lower bounds for this special functions and new sharp upper and lower bounds for the q-analogue harmonic number harmonic are derived. Moreover, a number of two-sided exponential bounding inequalities are given for the q-digamma function and two-sided exponential bounding inequalities are then obtained for the q-tetragamma function.

INEQUALITIES AND COMPLETE MONOTONICITY FOR THE GAMMA AND RELATED FUNCTIONS

  • Chen, Chao-Ping;Choi, Junesang
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1261-1278
    • /
    • 2019
  • It is well-known that if ${\phi}^{{\prime}{\prime}}$ > 0 for all x, ${\phi}(0)=0$, and ${\phi}/x$ is interpreted as ${\phi}^{\prime}(0)$ for x = 0, then ${\phi}/x$ increases for all x. This has been extended in [Complete monotonicity and logarithmically complete monotonicity properties for the gamma and psi functions, J. Math. Anal. Appl. 336 (2007), 812-822]. In this paper, we extend the above result to the very general cases, and then use it to prove some (logarithmically) completely monotonic functions related to the gamma function. We also establish some inequalities for the gamma function and generalize some known results.

NOTE ON STIRLING POLYNOMIALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.591-599
    • /
    • 2013
  • A large number of sequences of polynomials and numbers have arisen in mathematics. Some of them, for example, Bernoulli polynomials and numbers, have been investigated deeply and widely. Here we aim at presenting certain interesting and (potentially) useful identities involving mainly in the second-order Eulerian numbers and Stirling polynomials, which seem to have not been given so much attention.

LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.137-146
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.

A NOTE ON MORLEY'S FORMULA

  • Cho, Young-Joon;Park, In-Hyok;Seo, Tae-Young;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.201-210
    • /
    • 1999
  • Morley provided an interesting identity about 20 years earlier before its more generalized form was given by Dixon. In this note some of its generalized forms and an application of Morley's formula are considered.

  • PDF