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INEQUALITIES AND COMPLETE MONOTONICITY FOR

THE GAMMA AND RELATED FUNCTIONS

Chao-Ping Chen and Junesang Choi

Abstract. It is well-known that if φ′′ > 0 for all x, φ(0) = 0, and φ/x
is interpreted as φ′(0) for x = 0, then φ/x increases for all x. This has

been extended in [Complete monotonicity and logarithmically complete

monotonicity properties for the gamma and psi functions, J. Math. Anal.
Appl. 336 (2007), 812–822]. In this paper, we extend the above result

to the very general cases, and then use it to prove some (logarithmically)

completely monotonic functions related to the gamma function. We also
establish some inequalities for the gamma function and generalize some

known results.

1. Introduction

A function f is said to be completely monotonic on an open interval (a, b)
(−∞ ≤ a < b ≤ ∞) if

(1) (−1)nf (n)(x) ≥ 0
(
a < x < b; n ∈ N0

)
.

Here and throughout, we denote C, R, N, and Z−0 by sets of complex numbers,
real numbers, positive integers, and non-positive integers, respectively, and let
N0 := N ∪ {0}. If, in addition, f is continuous at x = a, then it is called
completely monotonic on [a, b), with similar definitions for (a, b] and [a, b].

Dubourdieu [20, p. 98] pointed out that if a non-constant function f is
completely monotonic over (a,∞), then the strict inequality in (1) holds true.
It is known (Bernstein’s Theorem) that f is completely monotonic on [0, ∞) if
and only if

f(x) =

∫ ∞
0

e−xt dµ(t),

where µ is a bounded and non-decreasing measure and the integral converges
for 0 ≤ x <∞ (see [54, pp. 160–163]). This means that a completely monotonic
function f on [0, ∞) is a Laplace transform with respect to the measure µ. The
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main properties of completely monotonic functions are given in [54, Chapter
IV]. For an extensive list of references on completely monotonic functions, we
also refer to [11].

Recall [27] that a positive function f is said to be logarithmically completely
monotonic on an interval I if its logarithm ln f satisfies

(2) (−1)k[ln f(x)](k) ≥ 0 (x ∈ I; k ∈ N).

A logarithmically completely monotonic function f on I must be completely
monotonic on I (see, e.g., [13–15, 43, 44]). This result, in fact, can be derived
(see, e.g., [19]) from the following Faá di Bruno’s formula (see, e.g., [41, p. 5]):

(3)
dn

dxn
[g(h(x))] =

∑
1≤i≤n,ik≥0( n∑

k=1

ik=i;
n∑

k=1

kik=n
)
 n!

n∏
k=1

ik!

 g(i)(h(x))

n∏
k=1

(
h(k)(x)

k!

)ik
.

Recall that a function f is said to be absolutely monotonic on an interval I if
it has derivatives of all orders and satisfies the following inequality:

f (k)(x) ≥ 0
(
x ∈ I; k ∈ N0

)
.

By Faá di Bruno’s formula (3), Chen and Srivastava [19, Theorem 1] proved
that if the function f is absolutely monotonic on R and the function g is
completely monotonic on I, then their composite function (f ◦ g)(x) = f(g(x))
is completely monotonic on I. For example, let f(x) = ex and the function g is
completely monotonic on I, then eg(x) is also completely monotonic on I. If we
let here f(x) = ex and g(x) = lnF (x), we see that the complete monotonicity
of lnF (x) implies the complete monotonicity of elnF (x) = F (x).

Recall that a function f is said to be a Bernstein function on an interval
I if f > 0 and f ′ is completely monotonic on I. By Faá di Bruno’s Formula
(3), Chen et al. [18, Theorem 3] proved that if f is a Bernstein function on an
interval I, then 1/f is logarithmically completely monotonic on I.

In [14, Theorem 1.1] and [26, 45] it is pointed out that the logarithmically
completely monotonic functions on (0,∞) can be characterized as the infinitely
divisible completely monotonic functions studied by Horn in [30, Theorem 4.4]
and that the set of all Stieltjes transforms is a subset of the set of logarithmically
completely monotonic functions on (0,∞).

The Euler gamma function Γ is usually defined by

Γ(x) =

∫ ∞
0

tx−1e−t dt (x > 0).

The psi (or digamma) function ψ(x) is defined by ψ(x) := d
dx ln Γ(x) and the

polygamma functions ψ(m)(x) are defined by ψ(m)(x) := dm

dxm ψ(x). Among

diverse integral representations of ψ(x) and ψ(m)(x) (see, e.g., [36, p. 16]), we
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choose to recall the following representations:

(4) ψ(x) = −γ +

∫ ∞
0

e−t − e−xt

1− e−t
dt (x > 0)

and

(5) ψ(m)(x) = (−1)m+1

∫ ∞
0

tm

1− e−t
e−xt dt (x > 0; m ∈ N),

where γ denotes the Euler-Mascheroni constant (see, e.g., [52, Section 1.2])
defined by

(6) γ := lim
n→∞

(
n∑
k=1

1

k
− log n

)
= 0.57721 56649 01532 86060 6512 . . . .

We recall the well-known Gauss’s summation theorem (see, e.g., [52, Section
1.5]):

(7)
2F1 (a, b; c; 1) :=

∞∑
n=0

(a)n (b)n
n! (c)n

=
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)(

<(c− a− b) > 0; c ∈ C \ Z−0
)
,

where (α)n denotes the Pochhammer symbol defined (for α ∈ C) by

(8)

(α)n : =

{
1 (n = 0)

α(α+ 1) · · · (α+ n− 1) (n ∈ N)

=
Γ(α+ n)

Γ(α)

(
α ∈ C \ Z−0

)
.

An interesting special case of (7) when the numerator parameter a or b is a
nonpositive integer −n gives

(9) 2F1 (−n, b; c; 1) =
(c− b)n

(c)n
(n ∈ N0; c ∈ C \ Z−0 ),

which is, in fact, equivalent to Vandermonde’s convolution theorem:

(10)

n∑
k=0

(
λ

k

)(
µ

n− k

)
=

(
λ+ µ

n

)
=

n∑
k=0

(
λ

n− k

)(
µ

k

)
(n ∈ N0; λ, µ ∈ C).

There exists a very extensive literature on the gamma function, the psi and
polygamma functions. In particular, a variety of inequalities, monotonicity and
complete monotonicity properties for these functions and their related functions
have been investigated by many authors. For example, see the works [3,5,6,42]
and the references therein.

In this paper, we will extend Lemma 1 in [17] to a general case and establish
Theorem 2.1 in the following section. We will show usefulness of our main
result, Theorem 2.1, by applying it to prove some (logarithmically) complete
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monotonicity of functions related to the gamma function. We will also establish
some inequalities for the gamma function and generalize some known results.

2. Main results

In [29, p. 99] it was stated that if φ′′ > 0 for all x, φ(0) = 0, and φ/x is
interpreted as φ′(0) for x = 0, then φ/x increases for all x. The first author
[17, Lemma 1] provided an extension of this result and proved the case m = 1
in (i) of Theorem 2.1. We give further extensions of the cited results asserted
in the following theorem.

Theorem 2.1. Let the function φ have derivatives of all orders on (−∞,∞)
and φ(k−1)(0) = 0 for 1 ≤ k ≤ m (m ∈ N). Define the function fm by

fm(x) =


φ(x)

xm
(x 6= 0)

φ(m)(0)

m!
(x = 0).

Then the following properties hold true:

(i)

(11) f (n)
m (x) =


1

xn+m
Φm,n(x) (x 6= 0)

n!

(m+ n)!
φ(m+n)(0) (x = 0),

where

Φm,n(x) =

n∑
k=0

(
n

k

)
(−1)k(k +m− 1)!

(m− 1)!
xn−kφ(n−k)(x).

Moreover,

(12) Φ(m)
m,n(x) = xnφ(n+m)(x).

(ii) For all x ∈ (−∞,∞) and a given n ∈ N0,

(13) φ(n+m)(x) ≥ 0 =⇒ f (n)
m (x) ≥ 0

and

(14) φ(n+m)(x) ≤ 0 =⇒ f (n)
m (x) ≤ 0.

Proof. By applying Leibniz rule to the definition of fm(x), it is easy to see the
first identity in (11).

By recalling the following known identity (see, e.g., [28, p. 26])

n∑
k=0

(−1)k

m+ k

(
n

k

)
=

n!

m(m+ 1) · · · (m+ n)
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and using L’Hôspital’s rule, we have

f (n)
m (0) =

n∑
k=0

(
n

k

)
(−1)k(k +m− 1)!

(m− 1)!
lim
x→0

φ(n−k)(x)

xm+k

=
φ(n+m)(0)

(m− 1)!

n∑
k=0

(−1)k

m+ k

(
n

k

)
=

n!

(m+ n)!
φ(m+n)(0).

This completes the proof of the second identity in (11).
Now we will prove (12). Use (8) to rewrite the form Φm,n(x) as follows:

Φm,n(x) =

n∑
k=0

n! (m)k
k!

(−1)k
xn−k

(n− k)!
φ(n−k)(x).

Differentiate the relation just obtained m times by applying Leibniz rule and
use d

dx

(
xj/j!

)
= xj−1/(j − 1)!, we obtain

dm

dxm
Φm,n(x) =

n∑
k=0

n! (m)k
k!

(−1)k
m∑
j=0

(
m

j

)
xn−k−j

(n− k − j)!
φ(n−k+m−j)(x)

=

n∑
k=0

n! (m)k
k!

(−1)k
n−k∑
j=0

m!

j! (m− j)!
xn−k−j

(n−k− j)!
φ(n−k+m−j)(x).(15)

Let s = j + k at the last expression in (15). Then we have

(16)

dm

dxm
Φm,n(x)

=

n∑
k=0

n! (m)k (−1)k

k!

n∑
s=k

m!

(s− k)! (m− s+ k)!

xn−s

(n− s)!
φ(n+m−s)(x).

Use (8) to write (m− s+ k)! in the following form:

(m− s+ k)! = Γ(m− s+ k + 1) = lim
ε→0+

Γ(m− s+ k + 1 + ε)

= lim
ε→0+

Γ(m− s+ 1 + ε) (m− s+ 1 + ε)k.

Using the last expression for the term (m− s+ k)! in (16), we obtain

dm

dxm
Φm,n(x) = lim

ε→0+

n∑
k=0

n∑
s=k

n! (m)k (−1)k

k!

m!

(s− k)!

· 1

Γ(m− s+ 1 + ε) (m− s+ 1 + ε)k

xn−s

(n− s)!
φ(n+m−s)(x).

Using a manipulation for double series:

n∑
k=0

n∑
s=k

As,k =

n∑
s=0

s∑
k=0

As,k
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and the following well-known identity:

(s− k)! =
(−1)k s!

(−s)k
(
0 ≤ k ≤ s; k, s ∈ N0

)
,

we find

dm

dxm
Φm,n(x)

= lim
ε→0+

n∑
s=0

n!m!

s! Γ(m− s+ 1 + ε)

xn−s

(n− s)!
φ(n+m−s)(x)

s∑
k=0

(m)k (−s)k
k! (m− s+ 1 + ε)k

= lim
ε→0+

n∑
s=0

(
n

s

)
φ(n+m−s)(x)

m!xn−s

Γ(m− s+ 1+ ε)
2F1 (−s, m ; m− s+ 1 + ε ; 1).

Applying the Chu-Vandermonde formula (9) to 2F1 (1), we get

dm

dxm
Φm,n(x) =

n∑
s=0

(
n

s

)
φ(n+m−s)(x)xn−s (1− s)s.

Considering

(1− s)s =

{
0 (s ∈ N)
1 (s = 0)

in the last identity, we obtain

dm

dxm
Φm,n(x) = xn φ(n+m)(x).

This completes the proof of (12).

It remains to prove (13) and (14). Here we only prove (13). A similar
argument will establish (14). Since (see (11))

f (n)
m (0) =

n!

(m+ n)!
φ(m+n)(0),

(13) holds true for x = 0.

Since φ(k−1)(0) = 0 for 1 ≤ k ≤ m (m ∈ N), it is easy to see that Φ
(k−1)
m,n (0) =

0 for 1 ≤ k ≤ m, and Φ0,0 is interpreted as φ.

Assume that φ(n+m)(x) ≥ 0 for x 6= 0 and a given n ∈ N0. Here we prove
(13) case by case.

Case 1. x > 0. We find from (12) that

(17) Φ(m)
m,n(x) = xnφ(n+m)(x) ≥ 0 (x ∈ [0, ∞)).

We see from (17) that Φ
(m−1)
m,n (x) is increasing on [0, ∞) and so

Φ(m−1)
m,n (x) ≥ Φ(m−1)

m,n (0) = 0 (x ∈ [0, ∞)).

We also see from the last inequality that Φ
(m−2)
m,n (x) is increasing on [0, ∞) and

so

Φ(m−2)
m,n (x) ≥ Φ(m−2)

m,n (0) = 0 (x ∈ [0, ∞)).
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Continuing this process, we are finally led to see the following inequality:

Φm,n(x) ≥ Φm,n(0) = 0 (x ∈ [0, ∞)).

Hence it follows from (11) that f
(n)
m (x) ≥ 0 on [0, ∞).

Case 2. x < 0 and n and m are even. We find from (12) that

(18) Φ
(2m)
2m,n(x) = xnφ(n+2m)(x) ≥ 0 (x ∈ (−∞, 0]).

We see from (18) that Φ
(2m−1)
2m,n (x) is increasing on (−∞, 0] and so

Φ
(2m−1)
2m,n (x) ≤ Φ(2m−1)

2m,n (0) = 0 (x ∈ (−∞, 0]).

We also see from the last inequality that Φ
(2m−2)
2m,n (x) is decreasing on (−∞, 0]

and so

Φ
(2m−2)
2m,n (x) ≥ Φ(2m−2)

2m,n (0) = 0 (x ∈ (−∞, 0]).

Continuing this process, we are finally led to find the following inequality:

Φ2m,n(x) ≥ Φ2m,n(0) = 0 (x ∈ (−∞, 0]).

Hence it follows from (11) that

f
(n)
2m (x) =

1

xn+2m
Φ2m,n(x) ≥ 0 (x ∈ (−∞, 0]).

The remaining cases (Case 3. x < 0 and n is even and m is odd; Case 4.
x < 0 and n is odd and m is even; Case 5. x < 0 and n is odd and m is odd)
can be established by using the similar argument in Case 2 and are left to an
interested reader. Thus the proof of the assertion (13) is complete.

This completes the proof of Theorem 2.1. �

Remark 2.2. Let I = (a, b) with a ≤ 0 and 0 < b ≤ ∞. By replacing (−∞,∞)
by I, we see that in fact Theorem 2.1 also holds on I.

The following properties hold from (13) and (14).

(i) Let φ(0) = 0. It is easy to see that, if φ′ is completely monotonic
on (−∞,∞), then f1 is completely monotonic on (−∞,∞); if φ′′ is
completely monotonic on (−∞,∞), then the function f ′1 is completely
monotonic on (−∞,∞). In general, if the function φ(k) for some integer
k ∈ N \ {1} is completely monotonic on (−∞,∞), then the function

f
(k−1)
1 is completely monotonic on (−∞,∞).

(ii) Let φ(0) = φ′(0) = 0. It is clear that, if φ′′ is completely monotonic
on (−∞,∞), then f2 and f ′1 are completely monotonic on (−∞,∞);
if φ′′′ is completely monotonic on (−∞,∞), then the functions f ′2 and
f ′′1 are completely monotonic on (−∞,∞). In general, if φ(k) for some

k ∈ N \ {1} is completely monotonic on (−∞,∞), then f
(k−2)
2 and

f
(k−1)
1 are completely monotonic on (−∞,∞).
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(iii) Let φ(0) = φ′(0) = φ′′(0) = 0. It follows that, if φ′′′ is completely
monotonic on (−∞,∞), then f3, f ′2 and f ′′1 are completely monotonic
on (−∞,∞); if φ(4) is completely monotonic on (−∞,∞), then the
functions f ′3, f ′′2 and f ′′′1 are completely monotonic on (−∞,∞). In
general, if φ(k) for some integer k ≥ 3 is completely monotonic on

(−∞,∞), then f
(k−3)
3 , f

(k−2)
2 and f

(k−1)
1 are completely monotonic on

(−∞,∞).

3. Applications of main results

As applications of Theorem 2.1, we present some (logarithmically) com-
pletely monotonic functions related to the gamma function, and we establish
some inequalities for the gamma function and generalize some known results.
3.1. Anderson et al. [12, Lemma 2.39] proved that the function

(19) x 7→ ln Γ(1 + x/2)

x

is strictly increasing from [2,∞) onto [0,∞) and

lim
x→∞

ln Γ(1 + x/2)

x lnx
=

1

2
.

From this, Anderson et al. [12, Lemma 2.40] derived the following conclusions:

The sequence Ω
1/n
n decreases strictly to 0 as n → ∞, the series

∑∞
n=2 Ω

1/ lnn
n

is convergent, and

lim
n→∞

Ω1/(n lnn)
n = e−1/2,

where

Ωn :=
πn/2

Γ(1 + n/2)

denotes the volume of the unit ball in Rn (see, e.g., [53, Theorem 12.69]).
Clearly, the function (19) is strictly increasing on [2,∞), i.e., the function

(20) f1(x) =
ln Γ(1 + x)

x

is strictly increasing on [1,∞). Kershaw and Laforgia [32] proved that the
function [Γ(1 + 1/x)]x decreases with x > 0, i.e., the function [Γ(1 + x)]1/x

increases with x > 0.
Grabner et al. [25] proved that the function f1 : (−1,∞) → R, defined by

f1(x) = ln Γ(x+1)
x , is concave, strictly increasing and satisfies an analogue of the

famous Bohr-Mollerup theorem (see, e.g., [52, p. 12]).

Sándor [48] proved that the function

(21) f2(x) =
xψ(x+ 1)− ln Γ(x+ 1)

x2

is strictly decreasing and strictly convex for x ≥ 6.
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Let the functions f1 and f2 be defined by (20) and (21), respectively. We
prove that the functions f ′1 and f2 are completely monotonic on (−1,∞). More-
over, we present a very short proof.

It is easy to see that f ′1(x) = f2(x).

Theorem 3.1. For x > −1, let

f1(x) =


ln Γ(x+ 1)

x
(x 6= 0)

−γ (x = 0),

where γ is the Euler-Mascheroni constant given in (6). Then the function f ′1
is completely monotonic on (−1,∞), that is

(22) (−1)nf
(n+1)
1 (x) ≥ 0

(
x > −1; n ∈ N0

)
.

Proof. Let φ(x) = ln Γ(x+ 1). Then

f1(x) =


φ(x)

x
(x 6= 0)

−γ (x = 0).

Clearly, φ(0) = 0, and

(−1)nφ(n+2)(x) = (−1)nψ(n+1)(x+ 1) =

∫ ∞
0

tn+1

1− e−t
e−(x+1)t dt > 0

for x > −1 and n ∈ N0, and therefore, the function φ′′ is completely mono-
tonic on (−1,∞). By Remark 2.2, the function f ′1 is completely monotonic on
(−1,∞). �

Remark 3.2. It is known [21, Lemma 2.2] that if f(x) is completely monotonic
on some interval (a, b), then so is f(x)−f(x+ c) on (a, b)∩ (a− c, b− c) for any
c > 0. Consequently, if f(x) is logarithmically completely monotonic on some
interval (a, b), then so is f(x)/f(x + c) on (a, b) ∩ (a − c, b − c) for any c > 0.
Write (22) as

(23) (−1)n
(

ln
1

[Γ(1 + x)]1/x

)n
≥ 0 (x > −1; n ∈ N).

We see that the function x 7→ 1
[Γ(1+x)]1/x

is logarithmically completely mono-

tonic on (−1,∞). This implies that the function x 7→
√
π

[Γ(1+x/2)]1/x
is logarith-

mically completely monotonic on (−2,∞), and then, the function

x 7→
[
Γ
(
1 + x+1

2

)]1/(x+1)[
Γ
(
1 + x

2

)]1/x
is logarithmically completely monotonic on (−1,∞). Because

Ω1/n
n =

√
π

[Γ(1 + n/2)]1/n
,
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we see that the sequences Ω
1/n
n and Ω

1/n
n /Ω

1/(n+1)
n+1 are both decreasing for

n ∈ N.
Some inequalities for the volume of the unit ball in Rn can be found in

[8, 10,47].

3.2. In 1974, Gautschi [22] proved the inequality conjectured by Rao Uppuluri

(24)
2

1/Γ(x) + 1/Γ(1/x)
≥ 1 (x > 0)

which states that the harmonic mean of Γ(x) and Γ(1/x) is greater than or
equal to 1. In 1997, Alzer [4] deduced that the harmonic mean of [Γ(x)]2 and
[Γ(1/x)]2 is greater than or equal to 1, i.e.,

(25)
2

1/[Γ(x)]2 + 1/[Γ(1/x)]2
≥ 1 (x > 0).

Let Mr(a, b) be the rth power mean of two positive real numbers a and b. The
inequalities (24) and (25) can be written as

M1

(
1

Γ(x)
,

1

Γ(1/x)

)
≤ 1 and M2

(
1

Γ(x)
,

1

Γ(1/x)

)
≤ 1 (x > 0).

Since the function r 7→ Mr(a, b) is increasing in r ∈ (−∞,∞), we see that in-
equality (25) is stronger than (24). In 2000, Alzer [7] proved that the inequality

Mr(Γ(x),Γ(1/x)) ≥ 1

holds for all x ∈ (0,∞) if and only if r ≥ 1/γ − π2/(6γ2), where γ denotes
Euler-Mascheroni constant.

In the second paper on this subject, Gautschi [23] showed that the conjecture

(26)
n∑n

k=1 1/Γ(xk)
≥ 1

(
xk > 0; k = 1, . . . , n; x1x2 · · ·xn = 1

)
is evident for n = 1, 2, . . . , 8, but false for n = 9. He also showed that, for all
n ∈ N, [

n∏
k=1

Γ(xk)

]1/n

≥ 1
(
xk > 0; k = 1, . . . , n; x1x2 · · ·xn = 1

)
.

In 2003, Alzer [9] proved that the harmonic mean inequality (26) holds for all
positive real numbers x1, x2, . . . , xn with x1x2 · · ·xn = 1 if and only if n ≤ 8.

Because of the well-known inequalities among the harmonic, geometric and
arithmetic means, inequality (24) implies, for example,

(27) Γ(x)Γ(1/x) ≥ 1 (x > 0).

An alternative proof of (27) was given by Kairies [31] and an extension of (27)
was presented by Laforgia and Sismondi [35]:

(28)

[
Γ(x+ 1)

Γ(x+ λ)

Γ(1/x+ 1)

Γ(1/x+ λ)

]1/2

≥ 1

Γ(λ+ 1)
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for x > 0 and 0 < λ < 1. In the case λ > 1 the inequality (28) must be
reversed. If we define

f(x) =
Γ(x+ 1)

Γ(x+ λ)
,

the previous inequality shows that the geometric mean inequality

G

(
f(x), f

(
1

x

))
≥ 1

Γ(λ+ 1)

holds. The lower bound in (27) is pessimistic. For example, Γ(5)Γ(0.2) =
110.179. Giordano and Laforgia [24] proved more accurate inequalities than
(27) for the product of gamma functions: For x1, x2 > 0 and x1x2 = 1, then

(29)
1

2
Γ(1 + x1 + x2) ≤ Γ(1 + x1)Γ(1 + x2) < Γ(1 + x1 + x2).

For the lower bound in (29), the equality occurs for x1 = x2 = 1. Giordano
and Laforgia [24] showed that the first inequality in (29) is only true for two
variables.

Motivated by the inequality (29), we can extend the second inequality in
(29) to several parameters asserted by the following theorem.

Theorem 3.3. Let ai > 0 (i = 1, 2, . . . , n) be real numbers, and let

(30) f(x) =
Γ (1 +

∑n
i=1 aix)∏n

i=1 Γ(1 + aix)
(x > 0).

Then we have

(i) The function f is strictly increasing on (0,∞);
(ii) The function x 7→ (ln f(x))

′′
is completely monotonic on (0,∞).

Proof. Let a =
∑n
i=1 ai. A simple computation yields

(ln f(x))
′

=

n∑
i=1

ai [ψ(1 + ax)− ψ(1 + aix)] > 0,

since the function ψ is strictly increasing on (0,∞).
For x > 0,

(ln f(x))
′′

=

n∑
i=1

ai [aψ′(1 + ax)− aiψ′(1 + aix)]

=

n∑
i=1

ai

[
a

∫ ∞
0

t

et − 1
e−axtdt− ai

∫ ∞
0

t

et − 1
e−aixtdt

]

=

n∑
i=1

ai

[
a

∫ ∞
0

t

et − 1
e−axtdt− a

∫ ∞
0

(a/ai)u
m−1

e(a/ai)t − 1
e−axudu

]

=

∫ ∞
0

n∑
i=1

aia

[
g(t)− g

(
a

ai
t

)]
e−axtdt,

(31)
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where

g(t) =
t

et − 1
(t > 0).

Since the function g is strictly decreasing on (0,∞), (31) implies

(−1)m (ln f(x))
(m+2)

> 0
(
x > 0; m ∈ N0

)
.

The proof is complete. �

Remark 3.4. Consider the function f given in (30). Since f(0) = 1 and f is
strictly increasing on (0, ∞), we find

1 <
Γ (1 +

∑n
i=1 aix)∏n

i=1 Γ(1 + aix)

(
x > 0; ai > 0; n ∈ N \ {1}

)
.

By replacing aix by xi, we get, for all xi > 0,

(32) Γ(1 + x1)Γ(1 + x2) · · ·Γ(1 + xn) < Γ(1 + x1 + x2 + · · ·+ xn).

We see that the inequality (32) generalizes the second inequality in (29) to
several variables without the condition

∏n
j=1 xj = 1. We can also prove the

inequality (32) by using the fact that the function x 7→ ln Γ(1+x)
x is increasing

on (0,∞). Indeed, for all xi > 0 (i = 1, 2, . . . , n), we have

ln Γ(1 + xi) ≤
xi

x1 + x2 + · · ·+ xn
ln Γ(1 + x1 + x2 + · · ·+ xn),

summing these inequalities side by side proves the inequality in (32).

Recall that a function g is said to be super-additive (respectively, sub-
additive) on an interval I if

g(x) + g(y) ≤ (respectively, ≥) g(x+ y) (x, y ∈ I; x+ y ∈ I).

Consider the function f given in (30). Superadditive property of the function
ln f will be an immediate consequence of the following Theorem 3.5.

Theorem 3.5. Let ai > 0 (i = 1, 2, . . . , n) be real numbers, and let

(33) F (x) =

[
Γ (1 +

∑n
i=1 aix)∏n

i=1 Γ(1 + aix)

]1/x

(x > 0).

Then the function x 7→ 1
F (x) is logarithmically completely monotonic on (0, ∞).

Proof. Let φ(x) = ln f(x), where f is the function in (30). Then

(34) lnF (x) =
φ(x)

x
.

Since φ(0) = 0, we find from Theorem 3.3 that the function φ′′ is completely
monotonic on (0, ∞). This implies by Remark 2.2 that the function x 7→
(lnF (x))′ is completely monotonic on (0, ∞). That is,

(35) (−1)n(lnF (x))(n+1) ≥ 0
(
x > 0; n ∈ N0

)
.
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Rewrite (35) as

(36) (−1)n
(

ln
1

F (x)

)(n)

≥ 0 (x > 0; n ∈ N).

We see that the function x 7→ 1
F (x) is logarithmically completely monotonic on

(0, ∞). �

Remark 3.6. Clearly, the function F defined by (33) is strictly increasing on
(0,∞). Using the known asymptotic expansion (see, e.g., [1, p. 257]):

(37) ln Γ(x) =

(
x− 1

2

)
lnx− x+ ln

√
2π +

1

12x
+O

(
1

x3

)
(x→∞),

we conclude

lim
x→∞

F (x) =
(
∑n
i=1 ai)

∑n
i=1 ai∏n

i=1 a
ai
i

.

It is easy to see that F (0) = limx→0+ F (x) = 1. Hence we find

(38) 1 <

[
Γ (1 +

∑n
i=1 aix)∏n

i=1 Γ(1 + aix)

]1/x

<
(
∑n
i=1 ai)

∑n
i=1 ai∏n

i=1 a
ai
i

for all x > 0 and ai > 0 (i = 1, 2, . . . , n). Taking a1 = a2 = · · · = an = 1, we
obtain

(39)
1

nnx
<

Γ(1 + x)n

Γ(1 + nx)
< 1 (x > 0).

Since the function lnF is strictly increasing on (0,∞), we obtain by (34) that
the function φ(x) = ln f(x) is super-additive on (0,∞), i.e.,

Γ (1 +
∑n
i=1 aix)∏n

i=1 Γ(1 + aix)

Γ (1 +
∑n
i=1 aiy)∏n

i=1 Γ(1 + aiy)
≤

Γ (1 +
∑n
i=1 ai(x+ y))∏n

i=1 Γ(1 + ai(x+ y))

(
x, y, ai > 0

)
.

By replacing aix and aiy with xi and yi, respectively, we get for all xi, yi > 0,

(40)
Γ (1 +

∑n
i=1 xi) Γ (1 +

∑n
i=1 yi)

Γ (1 +
∑n
i=1(xi + yi))

≤
n∏
i=1

Γ(1 + xi)Γ(1 + yi)

Γ(1 + xi + yi)
.

3.3. By using a geometrical method, Alsina and Tomás [2] proved the inequal-
ity:

(41)
1

n!
≤ Γ(x+ 1)n

Γ(nx+ 1)
≤ 1

(
x ∈ [0, 1]; n ∈ N0

)
.

By certain simple analytical arguments, Sándor [49] proved the inequality

(42) ψ(ax+ 1) ≥ ψ(x+ 1) (x ≥ 0; a ≥ 1).

Then he used the inequality (42) to show the following result: For all a ≥ 1,
the function

x 7→ Γ(x+ 1)a

Γ(ax+ 1)
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is a decreasing function on [0, ∞). This implies the inequality

(43)
1

Γ(1 + a)
≤ Γ(x+ 1)a

Γ(ax+ 1)
≤ 1 (a ≥ 1; x ∈ [0, 1]).

We remark here in passing that, in fact, the inequality (42) holds obviously,
since the function ψ is strictly increasing on (0,∞). Mercer [38] continued to
create new inequalities on this subject and other special functions and obtained
the following inequalities

Γ(1 + x)a

Γ(1 + ax)
<

Γ(1 + y)a

Γ(1 + ay)
(0 < a < 1)

and
Γ(1 + x)a

Γ(1 + ax)
>

Γ(1 + y)a

Γ(1 + ay)
(a < 0 or a > 1),

where y > x > 0, 1 + ax > 0 and 1 + ay > 0. Let f be a function defined by

(44) fa,b(x) =
Γ(1 + bx)a

Γ(1 + ax)b

in which 1 + ax > 0 and 1 + bx > 0. Using the same method used by Sándor
[49], Bougoffa [16] considered the monotonicity property of x 7→ fa,b(x), and
then, used his results to establish several inequalities involving the gamma
function. There have been a lot of results on this subject, see, for example,
[2, 16, 33, 34, 37–40, 46, 49–51]. Here we also present certain analogous results
asserted by the following theorem.

Theorem 3.7. For x, a, b > 0, let the function x 7→ fa,b(x) be given in (44),
and the function x 7→ Ga,b(x) be defined by

(45) Ga,b(x) =
Γ(1 + bx)a/x

Γ(1 + ax)b/x
.

Then we have

(i) For b > a > 0, the function x 7→ d2[ln fa,b(x)]
dx2 is completely monotonic

and x 7→ 1
Ga,b(x) is logarithmically completely monotonic on (0,∞).

(ii) For a > b > 0, the function x 7→
(

ln 1
fa,b(x)

)′′
is completely monotonic

and x 7→ Ga,b(x) is logarithmically completely monotonic on (0,∞).

Proof. For n ≥ 2, we obtain

(−1)n (ln fa,b(x))
(n)

= abn(−1)nψ(n−1)(1 + bx)− anb(−1)nψ(n−1)(1 + ax)

=

∫ ∞
0

abntn−1

1− e−t
e−(1+bx)tdt−

∫ ∞
0

anbtn−1

1− e−t
e−(1+ax)tdt(46)

=

∫ ∞
0

abntn−1

et − 1
e−bxtdt−

∫ ∞
0

anbtn−1

et − 1
e−axtdt

=

∫ ∞
0

an+1un−1

e(a/b)u − 1
e−axudu−

∫ ∞
0

anbtn−1

et − 1
e−axtdt
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= anb

∫ ∞
0

[
(a/b)t

e(a/b)t − 1
− t

et − 1

]
tn−2e−axtdt.

Since the function t 7→ t
et−1 is strictly decreasing on (0,∞), (46) implies that

(47) (−1)n (ln fa,b(x))
(n+2)

> 0
(
x > 0; b > a > 0; n ∈ N0

)
and

(48) (−1)n
(

ln
1

fa,b(x)

)(n+2)

> 0
(
x > 0; a > b > 0; n ∈ N0

)
.

Let φa,b(x) = ln fa,b(x), then

(49) lnGa,b(x) =
φa,b(x)

x
.

Clearly, φa,b(0) = 0. Since the function φ′′a,b is completely monotonic on (0,∞)

for b > a > 0, this implies by Remark 2.2 that the function x 7→ (lnGa,b(x))′

is completely monotonic on (0,∞) for b > a > 0, i.e.,

(−1)n(lnGa,b(x))(n+1) ≥ 0
(
x > 0; b > a > 0; n ∈ N0

)
,

or,

(50) (−1)n
(

ln
1

Ga,b(x)

)(n)

≥ 0
(
x > 0; b > a > 0; n ∈ N

)
.

Obviously, since Ga,b(x) = 1
Gb,a(x) , (50) implies that

(51) (−1)n(lnGa,b(x))(n) ≥ 0
(
x > 0; a > b > 0; n ∈ N

)
.

The proof of Theorem 3.7 is complete. �

Remark 3.8. Clearly, the function x 7→ Ga,b(x) given in (45) is strictly de-
creasing (respectively, strictly increasing) on (0,∞) if a > b > 0 (respectively,
b > a > 0). Then we find from (49) that the function x 7→ φa,b(x) = ln fa,b(x)
is sub-additive (respectively, super-additive) on an interval (0, ∞) if a > b > 0
(respectively, b > a > 0), where fa,b(x) is defined by (44). That is,

φa,b(x) + φa,b(y) ≥ (respectively, ≤)φa,b(x+ y) (x, y > 0),

or, equivalently,

(52) fa,b(x)fa,b(y) ≥ (respectively, ≤) fa,b(x+ y) (x, y > 0),

if a > b > 0 (respectively, b > a > 0).
Using the asymptotic expansion (37) we conclude

lim
x→∞

Ga,b(x) =

(
b

a

)ab
.

It is easy to see that Ga,b(0) = limx→0+ Ga,b(x) = 1. Hence we find

(53)

(
b

a

)ab
<

Γ(1 + bx)a/x

Γ(1 + ax)b/x
< 1 (x > 0; a > b > 0).
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The inequality (53) is seen to be reversed for x > 0 and b > a > 0.

Acknowledgment. The authors should express a deep gratitude for the
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