• Title/Summary/Keyword: Polycrystalline Material

Search Result 359, Processing Time 0.029 seconds

Characteristics of polycrystalline 3C-SiC micro pressure sensors for high temperature applications (초고온용 다결정 3C-SiC 마이크로 압력센서의 특성)

  • Thien, Duong Xuan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.387-388
    • /
    • 2008
  • High temperature micro pressure sensors were fabricated by polycrystalline (poly) 3C-SiC piezoresistors formed by oxidized SOI substrates with APCVD. These have been designed by bulk micromachining below $1{\times}1mm^2$ diaphragm and Si membrane $20{\mu}m$ thick. The pressure sensitivity of fabricated pressure sensor was 0.1 mV/Vbar. The non-linearity of sensor was ${\pm}0.44%$ FS and the hysteresis was 0.61% FS.TCS of pressure sensor was -1867 ppm/$^{\circ}C$, its TCR was -792 ppm/$^{\circ}C$, and TCGF to 5 bar was -1042 ppm/$^{\circ}C$ from 25 to $400^{\circ}C$.

  • PDF

Effects of Doping Concentration of Polycrystalline Silicon Gate Layer on Reliability Characteristics in MOSFET's (MOSFET에서 다결정 실리콘 게이트 막의 도핑 농도가 신뢰성에 미치는 영향)

  • Park, Keun-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.74-79
    • /
    • 2018
  • In this report, the results of a systematic study on the effects of polycrystalline silicon gate depletion on the reliability characteristics of metal-oxide semiconductor field-effect transistor (MOSFET) devices were discussed. The devices were fabricated using standard complimentary metal-oxide semiconductor (CMOS) processes, wherein phosphorus ion implantation with implant doses varying from $10^{13}$ to $5{\times}10^{15}cm^{-2}$ was performed to dope the polycrystalline silicon gate layer. For implant doses of $10^{14}/cm^2$ or less, the threshold voltage was increased with the formation of a depletion layer in the polycrystalline silicon gate layer. The gate-depletion effect was more pronounced for shorter channel lengths, like the narrow-width effect, which indicated that the gate-depletion effect could be used to solve the short-channel effect. In addition, the hot-carrier effects were significantly reduced for implant doses of $10^{14}/cm^2$ or less, which was attributed to the decreased gate current under the gate-depletion effects.

SAW characteristics of AlN films sputtered on SiC buffer layer for harsh environment applications (SiC 버퍼충위 스퍼터링법으로 증착된 극한 환경용 AlN박막의 SAW 특성)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.273-273
    • /
    • 2008
  • This paper describes the frequency response of two-port surface acoustic wave (SAW) resonator made of 002-polycrystalline aluminum nitride (AlN) thin film on 111-poly 3C-SiC buffer layer. In there, Polycrystalline AlN thin films were deposited on polycrystalline 3C-SiC buffer layer by pulsed reactive magnetron sputtering system, the polycrystalline 3C-SiC was grown on $SiO_2$/Si sample by CVD. The obtained results such as the temperature coefficient of frequency (TCF) of the device is about from 15.9 to 18.5 ppm/$^{\circ}C$, the change in resonance frequency is approximately linear (30-$150^{\circ}C$), which resonance frequency of AlN/3C-SiC structure has high temperature stability. The characteristics of AlN thin films grown on 3C-SiC buffer layer are also evaluated by using the XRD, and AFM images.

  • PDF

Electrical characteristics of In-situ doped polycrystalline 3C-SiC thin films (In-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.137-137
    • /
    • 2008
  • In-situ doped polycrystalline 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS(hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and 0 ~ 100 sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in polycrystalline 3C-SiC thin films grown on $SiO_2$/Si substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of polycrystalline 3C-SiC thin films decreased from 8.35 $\Omega{\cdot}cm$ with $N_2$ of 0 sccm to 0.014 $\Omega{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819\times10^{17}$ to $2.2994\times10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to 29.299 $cm^2/V{\cdot}S$, respectively.

  • PDF

Physical Characteristics of Polycrystalline 3C-SiC Thin Films Grown by LPCVD (LPCVD로 성장된 다결정 3C-SiC 박막의 물리적 특성)

  • Chung Gwiy-Sang;Kim Kang-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.732-736
    • /
    • 2006
  • This paper describes the physical characterizations of polycrystalline 3C-SiC thin films heteroepitaxially grown on Si wafers with thermal oxide, In this work, the 3C-SiC film was deposited by LPCVD (low pressure chemical vapor deposition) method using single precursor 1, 3-disilabutane $(DSB:\;H_3Si-CH_2-SiH_2-CH_3)\;at\;850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_2$ were measured by SEM (scanning electron microscope). Finally, residual strain was investigated by Raman scattering and a peak of the energy level was less than other type SiC films, From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS (Micro-Electro-Mechanical-Systems) applications.

Effects of Ozone Oxidation on the Contact Resistance of DRAM Cell (오존 산화가 DRAM 셀의 콘택 저항에 미치는 영향)

  • 최재승;이승욱;신봉조;박근형;이재봉
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.121-126
    • /
    • 2004
  • In this paper, the effects of the ozone oxidation of the landing polycrystalline silicon on the cell contact resistance of the DRAM device were studied. For this study, the ozone oxidation of the landing polycrystalline silicon layer was performed under various conditions, which was followed by the normal DRAM processes. Then, the cell contact resistance and $t_{WR}$ (write recovery time) of the devices were measured and analyzed. The experimental results showed that the cell contact resistance was more significantly increased for higher temperature of oxidation, longer time of oxidation, and higher concentration of ozone in the oxidation furnace. In addition, the TEM cross-sectional micrographs clearly showed that the oxide layer at the interface between the landing polycrystalline silicon layer and the plug polycrystalline silicon layer was increased by the ozone oxidation. Furthermore, the rate of the device failure due to too large write recovery time was also found to be well correlated with the increase of the cell contact resistance.

Grain Size Effect on Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil;Chun, Myoungpyo
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.375-378
    • /
    • 2016
  • Characteristics of nanocrystalline materials are known substantially dependent on the microstructure such as grain size, crystal orientation, and grain boundary. Thus it is desired to have systematic characterization methods on the various nanomaterials with complex geometries, especially in low dimensional nature. One of the interested nanomaterials would be a pure two-dimensional material, graphene, with superior mechanical, thermal, and electrical properties. In this study, mechanical properties of "polycrystalline" graphene were numerically investigated by molecular dynamics simulations. Subdomains with various sizes would be generated in the polycrystalline graphene during the fabrication such as chemical vapor deposition process. The atomic models of polycrystalline graphene were generated using Voronoi tessellation method. Stress strain curves for tensile deformation were obtained for various grain sizes (5~40 nm) and their mechanical properties were determined. It was found that, as the grain size increases, Young's modulus increases showing the reverse Hall-Petch effect. However, the fracture strain decreases in the same region, while the ultimate tensile strength (UTS) rather shows slight increasing behavior. We found that the polycrystalline graphene shows the reverse Hall-Petch effect over the simulated domain of grain size (< 40 nm).

Lattice based Microstructure Evolution Model for Monte Carlo Finite Element Analysis of Polycrystalline Materials (격자식 미세구조 성장 모델을 이용한 다결정 박막 소재의 유한 요소 해석)

  • 최재환;김한성;이준기;나경환
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 2004
  • The mechanical properties of polycrystalline thin-films, critical for Micro-Electro-Mechanical Systems (MEMS) components, are known to have the size effect and the scatter in the length scale of microns by the numbers of intensive investigation by experiments and simulations. So, the consideration of the microstructure is essential to cover these length scale effects. The lattice based stochastic model for the microstructure evolution is used to simulate the actual microstructure, and the fast and reliable algorithm is described in this paper. The kinetics parameters, which are the key parameters for the microstructure evolution based on the nucleation and growth mechanism, are extracted from the given micrograph of a polycrystalline material by an inverse method. And the method is verified by the comparison of the quantitative measures, the number of grains and the grain size distribution, for the actual and simulated microstructures. Finite element mesh is then generated on this lattice based microstructure by the developed code. And the statistical finite element analysis is accomplished for selected microstructure.

Characteristics of Poly-Oxide of New Sacrificial Layer for Micromachining (마이크로머시닝을 위한 새로운 희생층인 다결정-산화막의 특성)

  • Hong, Soon-Kwan;Kim, Chul-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 1996
  • Considering that polycrystalline silicon, a structural material of the micromachining, is affected by a sacrificial oxide layer, the poly-oxide obtained by the thermal oxidation of polycrystalline silicon is newly proposed and estimated as the sacrificial oxide layer. The grain size of the polycrystalline silicon grown on the poly-oxide is larger than that of poly crystalline silicon grown on the conventional sacrificial oxide layer. As a result of XRD, increase of (111) textures and formation of additional (220) textures are observed on the polycrystaIline silicon deposited on the poly-oxide. Also, the polycrystalline silicon grown on the poly-oxide represents small and uniform stress.

  • PDF

Thermoelectric Property and p-n Transition Mechanism of Hot Pressed Bi4/3Sb2/3Te3 ($Bi_{4/3}Sb_{2/3}Te_3$ 가압소결체의 열전특성과 p-n 전이기구)

  • 박태호;유한일;심재동
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.855-862
    • /
    • 1992
  • Thermoelectric power, electrical conductivity and Hall effect were measured, as functions of temperature in the range of 100 to 600 K, on polycrystalline Bi4/3Sb2/3Te3 which had been prepared via uniaxial hot-pressing at different temperatures in the range of 373 K to 773 K, aiming at searching a profitable processing route to a polycrystalline thermoelectric material, a promising, viable alternative to a single crystalline one. It was found that, with increasing temperature of pressing under a fixed pressure, the material, normally a p-type prior to being hot-pressed, underwent a transition to n-type. This transition was confirmed to be due to plastic deformation during hot-pressing and interpreted as being attributed to the change of the major ionic defect BiTe' into TeBi˙at temperature high enough for structure elements mobility. Thermoelectric figure-of-merit of the hot-pressed material was discussed in connection with the p-n transition in addition to microstructure.

  • PDF