• Title/Summary/Keyword: Poly-lactic acid

Search Result 297, Processing Time 0.021 seconds

A study of mechanical properties with FDM 3D printing layer conditions (FDM 3D Printing 적층조건에 따른 기계적 물성의 연구)

  • Kim, Bum-Joon;Lee, Hong-Tae;Sohn, Il-Seon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.

Long-term Follow-up of Extensive Peri-anchor (Poly-L/D-lactic Acid) Cyst Formation after Arthroscopic Rotator Cuff Repair: A Case Report

  • Kim, Jong-Ho;Kim, Jong-Ick;Lee, Hyo-Jin;Kim, Dong-Jin;Sung, Gwang Young;Kwak, Dong-Ho;Kim, Yang-Soo
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.2
    • /
    • pp.100-105
    • /
    • 2019
  • Suture anchors are commonly used in shoulder surgeries, especially for rotator cuff tears. Peri-anchor cyst formation, however, is sometimes detected on follow-up radiologic image after surgery. The purpose of this report is to discuss the case of a patient who presented with regression of extensive peri-anchor cyst on postoperative 4-year follow-up magnetic resonance imaging and had good clinical outcome despite peri-anchor cyst formation after arthroscopic rotator cuff repair.

Tranilast-delivery surgical sutures to ameliorate wound healing by reducing scar formation through regulation of TGF-β expression and fibroblast recruitment

  • Choi, Sung Yoon;Kim, Byung Hwi;Huh, Beom Kang;Jeong, Woong;Park, Min;Park, Hyo Jin;Park, Ji-Ho;Heo, Chan Yeong;Choy, Young Bin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.469-477
    • /
    • 2018
  • We describe surgical sutures enabled with the local, sustained delivery of a TGF-${\beta}$ inhibitory drug, tranilast. To fabricate drug-delivery sutures, we separately prepared a tranilast-loaded strand using poly (lactic-co-glycolic acid), which was then physically braided with a surgical suture already in clinical use. By this method, the drug-delivery sutures maintained the mechanical strength and allowed the modulation of drug release profiles by simply altering the tranilast-loaded strand. The drug-delivery sutures herein released tranilast for up to 14 days. When applied to animal models, scarring was indeed reduced with diminished TGF-${\beta}$ expression and fibroblast numbers during the entire 21 day testing period.

Study on 3D Printer Producing of Assistive Devices for Vertical Incidence of Law Method (Law법 수직입사를 위한 보조기구의 3D 프린터 제작 연구)

  • Kim, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.489-494
    • /
    • 2020
  • The Law method is observing the temporal bone. There are two types of methods: the double angle method, which manipulates the center ray angle of the tube twice, and the single angle method, which manipulates once. The purpose is to increase the reproducibility of the image by making vertical incidence by making an assistive device using a 3D printer. Two assistive devices with a wedge-shaped 8.5 × 10 × 2.3 cm, an inclined surface of 7.5 cm, and an inclination angle of 15° were fabricated. Assistive devices can be combined with each other in the form of grooves, and PLA (Poly Lactic Acid) is used as a material. In the first experiment, 10 examiners operated the tube 15° in the caudad direction and 15° in the anterior direction, and measured it with a protractor to conduct a reproducibility experiment. Second, two examiners acquired vertically incidence images using the existing law method and assistive devices, and measured the distance between each measurement point to evaluate the reproducibility. The tube center ray angle reproducibility experiment was not statistically significant, but the angle difference was up to 9° between examiners. The reproducibility experiment of radiographic images was not statistically significant with the conventional method, and the method using an assistive device was statistically significant. Therefore, regardless of skill level, an image capable of securing reproducibility, which is the advantage of vertical incidence, could be obtained.

Synthesis of Thermosensitive and Biodegradable Methoxy Poly(ethylene glycol)-Polycaprolactone and Methoxy Poly(ethylene glycol)-Poly(lactic acid) Block Copolymers (온도감응 및 생분해성 폴리에틸렌 글리콜-폴리카프로락톤과 폴리에틸렌 글리콜-폴리락타이드 공중합체의 합성)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • The sol to gel transition of aqueous solution of block copolymers consisting of methoxy poly (ethylene glycol) (MPEG) and biodegradable polyesters such as $\varepsilon$-caprolactone and L-lactide was investigated as a function of temperature. MPEG-PCL was prepared by ring opening polymerization of $\varepsilon$-caprolactone in the presence of HClㆍEt$_2$O as monomer activator at room temperature. Also, MPEG-PLLA was prepared by ring opening polymerization of L-lactide in the presence of stannous octoate at 115$^{\circ}C$. The properties of block copolymers were investigated by $^1$H-NMR, IR, and GPC as well as the observation of thermo sensitive phase transition in aqueous solution. As the hydrophobic block length increased, the sol to gel transition temperature increased and curve of that steepen to lower concentration. To confirm the gel formation at body temperature, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After surging, we investigated the gelation in mice. The results obtained in this study confirmed the feasibility as biomaterials of injectable implantation for controlled release of drug and protein delivery.

Regeneration of Intervertebral Disc Using Gellan Sponge Loading PLGA Microspheres (PLGA 미립구가 함유된 젤란검 스폰지를 이용한 추간판 조직 재생)

  • Park, Hyunwoo;Kim, Hye Yun;Kwon, Soon Yong;Khang, Gilson;Kim, Yong-Sik
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.144-150
    • /
    • 2015
  • Gellan gum as a natural polysaccharide has good heat resistance, acid resistance and enzymes resistance. However, one of the drawbacks of gellan gum might be the lower mechanical strength. In this work, gellan gum scaffolds were mixed with poly(lactic-co-glycolic acid) (PLGA) microsphere in order to improve mechanical properties. The gellan gum scaffolds with various contents of PLGA microsphere were prepared for the regeneration of disc tissues. To evaluate the mechanical strength of hybrid structure of gellan gum and PLGA microsphere, compression strength of the fabricated scaffolds was measured. MTT analysis, SEM observation, histological evaluation and RT-PCR were performed to confirm the effect on the cell growth and extracellular matrix secretion. As a result, it showed the best cell proliferation and extracellular matrix secretion in gellan gum sponge containing 50% PLGA microspheres. In conclusion, this study confirmed that the hybrid structure of gellan gum and PLGA microspheres was found suitable in regeneration of the intervertebral disc.

Formulation and Characterization of Antigen-loaded PLGA Nanoparticles for Efficient Cross-priming of the Antigen

  • Lee, Young-Ran;Lee, Young-Hee;Im, Sun-A;Kim, Kyung-Jae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • Background: Nanoparticles (NPs) prepared from biodegradable polymers, such as poly (D,L-lactic acid-co-glycolic acid) (PLGA), have been studied as vehicles for the delivery of antigens to phagocytes. This paper describes the preparation of antigen-loaded PLGA-NPs for efficient cross-priming. Methods: NPs containing a similar amount of ovalbumin (OVA) but different sizes were produced using a micromixer-based W/O/W solvent evaporation procedure, and the efficiency of the NPs to induce the cross-presentation of OVA peptides were examined in dendritic cells (DCs). Cellular uptake and biodistribution studies were performed using fluorescein isothiocyanate (FITC)-loaded NPs in mice. Results: The NPs in the range of $1.1{\sim}1.4{\mu}m$ in size were the most and almost equally efficient in inducing the cross-presentation of OVA peptides via $H-2K^b$ molecules. Cellular uptake and biodistribution studies showed that opsonization of the NPs with mouse IgG greatly increased the percentage of FITC-positive cells in the spleen and lymph nodes. The major cell type of FITC-positive cells in the spleen was macrophages, whereas that of lymph nodes was DCs. Conclusion: These results show that IgG-opsonized PLGA-NPs with a mean size of $1.1{\mu}m$ would be the choice of biodegradable carriers for the targeted-delivery of protein antigens for cross-priming in vivo.

Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid (젖산 및 글리콜산에서 합성된 PLGA 멤브레인의 특성과 생분해성에 관한 연구)

  • Xie, Yuying;Park, Jong-Soon;Kang, Soon-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2958-2965
    • /
    • 2015
  • The PLGA(Poly lactide-co-glycolide) Copolymer have been actively applied to the medical implant material as biomaterials. PLGA membrane was able to alveoloplasty with osteotomy for favorable degradation characteristics and possibilities for sustained drug delivery. In this study, PLGA membrane was prepared using phase inversion method, and examined to optical method analysis(NMR, IR), mechanical property measurement (tearing strength) and thermal characteristic analysis(DSC). In addition, the biodegradation characteristics of the PLGA membrane filled with a PBS(Phosphate Buffered Solution) of the water bath ($60^{\circ}C$) according to the degree of surface degradation in the degradation time, the pH change of the solution and change of the mass of the membrane were measured.

Surface Characteristics and Fibroblast Adhesion Behavior of RGD-Immobilized Biodegradable PLLA Films

  • Jung Hyun Jung;Ahn Kwang-Duk;Han Dong Keun;Ahn Dong-June
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.446-452
    • /
    • 2005
  • The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(L-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment and in situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GRDG, control) and GRGD as a ligand peptide to get PLLA-g-GRDG and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138-145 pmol/$cm^2$. The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control

Colorimetric Based Analysis Using Clustered Superparamagnetic Iron Oxide Nanoparticles for Glucose Detection (클러스터 초상자성체 산화철 나노입자를 이용한 색채학적 해석 기반 당 측정)

  • Choi, Wonseok;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.228-234
    • /
    • 2020
  • Superparamagnetic iron oxide nanoparticles (SPIONs) are approved by the Food and Drug Administration (FDA) in the United States. SPIONs are used in magnetic resonance imaging (MRI) as contrast agents and targeted delivery in nanomedicine using external magnet sources. SPIONs act as an artificial peroxidase (i.e., nanozyme), and these reactions were highly stable in various pH conditions and temperatures. In this study, we report a nanozyme ability of the clustered SPIONs (CSPIONs) synthesized by the oil-in-water (O/W) method and coated with biocompatible poly(lactic-co-glycolic acid) (PLGA). We hypothesize that the CSPIONs can have high sensitivity toward H2O2 derived from the reaction between a fixed amount of glucose and glucose oxidase (GOX). As a result, CSPIONs oxidized a 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) commonly used as a substrate for hydrogen peroxidase in the presence of H2O2, leading to a change in the color of the substrate. We also utilized a colorimetric assay at 417 nm using various glucose concentrations from 5 mM to 1.25 μM to validate β-D-glucose detection. This study demonstrated that the absorbance value increases along with increasing the glucose level. The results were highly repeated at concentrations below 5 mM (all standard deviations < 0.03). Moreover, the sensitivity and limit of detection were 1.50 and 5.44 μM, respectively, in which CSPIONs are more responsive to glucose than SPIONs. In conclusion, this study suggests that CSPIONs have the potential to be used for glucose detection in diabetic patients using a physiological fluid such as ocular, saliva, and urine.