References
- Bevan MJ: Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143;1283-1288, 1976 https://doi.org/10.1084/jem.143.5.1283
- Champion JA, Walker A, Mitragotri S: Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25;1815-1821, 2008 https://doi.org/10.1007/s11095-008-9562-y
- Elamanchili P, Diwan M, Cao M, Samuel J: Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22;2406-2412, 2004 https://doi.org/10.1016/j.vaccine.2003.12.032
- Gerelchuluun T, Lee YH, Lee YR, Im SA, Song S, Park JS, Han K, Kim K, Lee CK: Dendritic cells process antigens encapsulated in a biodegradable polymer, poly(D,L-lactide- co-glycolide), via an alternate class I MHC processing pathway. Arch Pharm Res 30;1440-1446, 2007 https://doi.org/10.1007/BF02977369
- Harding CV, Song R: Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J Immunol 153;4925-4933, 1994
- Heath WR, Carbone FR: Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19;47-64, 2001 https://doi.org/10.1146/annurev.immunol.19.1.47
- Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H: Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264;961-965, 1994 https://doi.org/10.1126/science.7513904
- Jiang W, Gupta RK, Deshpande MC, Schwendeman SP: Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 57;391-410, 2005 https://doi.org/10.1016/j.addr.2004.09.003
- Johansen P, Men Y, Merkle HP, Gander B: Revisiting PLA/PLGA microspheres: an analysis of their potential in parenteral vaccination. Eur J Pharm Biopharm 50;129-146, 2000 https://doi.org/10.1016/S0939-6411(00)00079-5
- Karttunen J, Sanderson S, Shastri N: Detection of rare antigen- presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc Natl Acad Sci U S A 89;6020-6024, 1992 https://doi.org/10.1073/pnas.89.13.6020
- Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J: Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120;18-26, 2007 https://doi.org/10.1016/j.jconrel.2007.03.012
- Lee JK, Lee MK, Yun YP, Kim Y, Kim JS, Kim YS, Kim K, Han SS, Lee CK: Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int Immunopharmacol 1;1275-1284, 2001 https://doi.org/10.1016/S1567-5769(01)00052-2
- Lee YH, Lee YR, Kim KH, Im SA, Song S, Lee MK, Kim Y, Hong JT, Kim K, Lee CK: Baccatin III, a synthetic precursor of taxol, enhances MHC-restricted antigen presentation in dendritic cells. Int Immunopharmacol 2011 [Epub ahead of print]
- Lee YR, Yang IH, Lee YH, Im SA, Song S, Li H, Han K, Kim K, Eo SK, Lee CK: Cyclosporin A and tacrolimus, but not rapamycin, inhibit MHC-restricted antigen presentation pathways in dendritic cells. Blood 105;3951-3955, 2005 https://doi.org/10.1182/blood-2004-10-3927
- Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM: Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release 125;193-209, 2008 https://doi.org/10.1016/j.jconrel.2007.09.013
- Newman KD, Sosnowski DL, Kwon GS, Samuel J: Delivery of MUC1 mucin peptide by Poly(d,l-lactic-co-glycolic acid) microspheres induces type 1 T helper immune responses. J Pharm Sci 87;1421-1427, 1998 https://doi.org/10.1021/js980070s
- Panyam J, Labhasetwar V: Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55;329-347, 2003 https://doi.org/10.1016/S0169-409X(02)00228-4
- Sahoo SK, Panyam J, Prabha S, Labhasetwar V: Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82;105-114, 2002 https://doi.org/10.1016/S0168-3659(02)00127-X
- Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ: Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117;78-88, 2006 https://doi.org/10.1111/j.1365-2567.2005.02268.x
- Sigal LJ, Crotty S, Andino R, Rock KL: Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398;77-80, 1999 https://doi.org/10.1038/18038
- Venkataprasad N, Coombes AG, Singh M, Rohde M, Wilkinson K, Hudecz F, Davis SS, Vordermeier HM: Induction of cellular immunity to a mycobacterial antigen adsorbed on lamellar particles of lactide polymers. Vaccine 17;1814-1819, 1999 https://doi.org/10.1016/S0264-410X(98)00372-7
- Waeckerle-Men Y, Groettrup M: PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 57;475-482, 2005 https://doi.org/10.1016/j.addr.2004.09.007
- Yewdell JW, Haeryfar SM: Understanding presentation of viral antigens to CD8+ T cells in vivo: the key to rational vaccine design. Annu Rev Immunol 23;651-682, 2005 https://doi.org/10.1146/annurev.immunol.23.021704.115702
Cited by
- Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation vol.4, pp.7, 2011, https://doi.org/10.2217/imt.12.40
- Design strategies for fluorescent biodegradable polymeric biomaterials vol.1, pp.2, 2013, https://doi.org/10.1039/c2tb00071g
- Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery vol.9, pp.17, 2011, https://doi.org/10.2217/nnm.14.156
- Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses vol.5, pp.1, 2011, https://doi.org/10.1080/2162402x.2015.1068493
- Peptide/protein vaccine delivery system based on PLGA particles vol.12, pp.3, 2011, https://doi.org/10.1080/21645515.2015.1102804
- Enhancement of Adjuvant Functions of Natural Killer T Cells Using Nanovector Delivery Systems: Application in Anticancer Immune Therapy vol.8, pp.None, 2011, https://doi.org/10.3389/fimmu.2017.00879
- Co-Delivery of Disease Associated Peptide and Rapamycin via Acetalated Dextran Microparticles for Treatment of Multiple Sclerosis vol.1, pp.3, 2017, https://doi.org/10.1002/adbi.201700022
- Local innate responses and protective immunity after intradermal immunization with bovine viral diarrhea virus E2 protein formulated with a combination adjuvant in cattle vol.35, pp.27, 2011, https://doi.org/10.1016/j.vaccine.2017.05.029
- Design and evaluation of the immunogenicity and efficacy of a biomimetic particulate formulation of viral antigens vol.7, pp.None, 2011, https://doi.org/10.1038/s41598-017-13915-x
- Enhanced MHC-I antigen presentation from the delivery of ovalbumin by light-facilitated biodegradable poly(ester amide)s nanoparticles vol.6, pp.13, 2011, https://doi.org/10.1039/c7tb03233a
- Poly Lactic-co-Glycolic Acid Nanoparticles Containing Human Gastric Tumor Lysates as Antigen Delivery Vehicles for Dendritic Cell-Based Antitumor Immunotherapy vol.48, pp.8, 2011, https://doi.org/10.1080/08820139.2019.1610889
- BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: clinical applications vol.34, pp.1, 2011, https://doi.org/10.1038/s41375-019-0540-7
- Development of a novel T cell‐oriented vaccine using CTL/Th‐hybrid epitope long peptide and biodegradable microparticles, against an intracellular bacterium vol.64, pp.10, 2011, https://doi.org/10.1111/1348-0421.12836