Browse > Article

Surface Characteristics and Fibroblast Adhesion Behavior of RGD-Immobilized Biodegradable PLLA Films  

Jung Hyun Jung (Biomaterials Research Center, Korea Institute of Science and Technology)
Ahn Kwang-Duk (Biomaterials Research Center, Korea Institute of Science and Technology)
Han Dong Keun (Biomaterials Research Center, Korea Institute of Science and Technology)
Ahn Dong-June (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Macromolecular Research / v.13, no.5, 2005 , pp. 446-452 More about this Journal
Abstract
The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(L-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment and in situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GRDG, control) and GRGD as a ligand peptide to get PLLA-g-GRDG and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138-145 pmol/$cm^2$. The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control
Keywords
tissue engineering; PLLA film; plasma treatment; direct AA grafting; RGD immobilization; fibroblast adhesion.;
Citations & Related Records

Times Cited By Web Of Science : 17  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 J. P. Nuutinen, C. Clerc, T. Virta, and P. Tormala, J. Biomater. Sci. Polym. Edn, 13, 1325 (2002)   DOI   ScienceOn
2 Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials, 24, 3725 (2003)   DOI   ScienceOn
3 U. Hersel, C. Dahman, and H. Kessle, Biomaterials, 24, 4385 (2003)   DOI   ScienceOn
4 H. S. Shin, S. B. Jo, and A. G. Mi�2C Biomaterials, 24, 4353 (2003)   DOI   ScienceOn
5 Cell Proliferation Reagent WST-1 technical bulletin, Roche Diagnostic GmbH, Germany
6 M. B. O. Reikerink, M. B. Claase, G. H. Engbers, D. W. Grijpma, and J. Feijen, J. Biomed. Mater. Res., 65A, 417 (2003)   DOI
7 M. Kantlehner, P. Schaffner, D. Finsinger, J. Meyer, A. Jonczyk, B. Diefenbach, B. Nies, G. Holzemann, S. L. Goodman, and H. Kessler, ChemBioChem., 1, 107 (2000)   DOI   ScienceOn
8 C. Elvira, F. Yi, M. C. Azevedo, L. Rebouta, A. M. Cunha, J. S. Roman, and R. Reis, J. Mater. Sci. Mater. Med., 14, 187 (2003)   DOI   ScienceOn
9 B. S. Kim and D. J. Mooney, TIBITECH, 16, 224 (1998)   DOI   ScienceOn
10 S. P. Massia and J. A. Hubbell, J. Cell. Biol., 114, 1089 (1991)   DOI   ScienceOn
11 D. A. Barrera, E. Zylstra, P. T. Lansbury, and R. Langer, Macromolecules, 28, 425 (1995)   DOI   ScienceOn
12 D. K. Gilding and A. M. Reed, Polymer, 20, 1459 (1979)   DOI   ScienceOn
13 B. Jeschke, J. Meyer, A. Jonczyk, H. Kessler, P. Adamietz, N. M. Meenen, M. Kantlehner, C. Geopfert, and B. Nies, Biomaterials, 23, 3455 (2002)   DOI   ScienceOn
14 S. Aksoy, H. Tumturk, and N. Hasirci, J. Biotech., 60, 37 (1998)   DOI
15 J. A. Hubbell, Trends Polym. Sci., 2, 20 (1994)
16 C. E. Holy, C. Cheong, J. E. Davies, and M. S. Shoichet, Biomaterials, 22, 25 (2001)   DOI   PUBMED   ScienceOn
17 B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Warson, in Molecular Biology of the Cell, Garland Publishing, New York, 1994, p 971
18 M. Vert, Makromol. Chem. Makromol. Symp., 6, 109 (1986)
19 I. Bisson, M. Kosinshi, S. Ruault, B. Gupta, J. Hilborn, F. Wurm, and P. Frey, Biomaterials, 23, 3149 (2002)   DOI   ScienceOn
20 R. Langer and J. P. Vacanti, Science, 260, 920 (1993)   DOI
21 M. D. Pierschbacher and E. Ruoslahti, Nature, 309, 30 (1984)   DOI   ScienceOn
22 M. Gumupderelioolu and H. Turkoolu, Biomaterials, 23, 3927 (2002)   DOI   ScienceOn
23 D. L. Hay, J. A. von Fraunhofer, N. Chegini, and B. J. Masterson, J. Biomed. Mater. Res., 22, 179 (1988)
24 M. B. O. Riekerink, M. B. Claase, G. H. Engbers, D. W. Grijpma, and J. Feijen, J. Biomed. Mater. Res., 65A, 417 (2003)   DOI
25 J. A. Hubbell, Bio/Technology, 13, 565 (1995)   DOI   ScienceOn
26 G. Marletta, G. Ciapetti, C. Satriano, S. Pagani, and N. Baldini, Biomaterials, 26, 4793 (2005)   DOI   ScienceOn
27 G. Chen, T. Ushida, and T. Tateishi, Macromol. Biosci., 2, 67 (2002)   DOI   ScienceOn
28 D. J. Mooney, K. Sano, P. M. Kaufmann, K. Majahod, B. Schloo, J. P. Vacanti, and R. Langer, J. Biomed. Mater. Res., 37, 413 (1997)   DOI   ScienceOn
29 G. C. M. Steffens, L. Nothdurft, G. Buse, H. Thissen, H. Hocher, and D. Klee, Biomaterials, 23, 3523 (2002)   DOI   ScienceOn
30 H. Chim, J. L. Ong, J.-T. Schantz, D. W. Hutmacher, and C. M. Agrawal, J. Biomed. Mater. Res., 65A, 327 (2003)   DOI
31 A. Rezania and K. E. Healy, J. Biomed. Mater. Res., 52, 595 (2000)   DOI   ScienceOn
32 C. E. Holy, C. Cheng, J. E. Davies, and M. S. Shoichet, Biomaterials, 22, 25 (2001)   DOI   PUBMED   ScienceOn
33 S. P. Massia and J. A. Hubbell, Anal. Biochem., 187, 292 (1990)   DOI   ScienceOn
34 Z. Ma, C. Cao, J Yuan, J. Ji, Y. Gong, and J. Shen, J. Appl. Polym. Sci., 85, 2163 (2002)   DOI   ScienceOn
35 J. A. Hubbell and R. Langer, Chem. Eng. News, March 13, 42 (1995)
36 D. A. Barrera, E. Zylstra, P. T. Lansbury, and R. Langer, J. Am. Chem. Soc., 115, 11010 (1993)   DOI
37 J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998)   DOI   ScienceOn