Surface Characteristics and Fibroblast Adhesion Behavior of RGD-Immobilized Biodegradable PLLA Films

  • Jung Hyun Jung (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Ahn Kwang-Duk (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Han Dong Keun (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Ahn Dong-June (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2005.10.01

Abstract

The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(L-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment and in situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GRDG, control) and GRGD as a ligand peptide to get PLLA-g-GRDG and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138-145 pmol/$cm^2$. The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control

Keywords

References

  1. R. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. J. A. Hubbell and R. Langer, Chem. Eng. News, March 13, 42 (1995)
  3. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Warson, in Molecular Biology of the Cell, Garland Publishing, New York, 1994, p 971
  4. B. S. Kim and D. J. Mooney, TIBITECH, 16, 224 (1998) https://doi.org/10.1016/S0167-7799(98)01191-3
  5. M. Vert, Makromol. Chem. Makromol. Symp., 6, 109 (1986)
  6. D. K. Gilding and A. M. Reed, Polymer, 20, 1459 (1979) https://doi.org/10.1016/0032-3861(79)90009-0
  7. D. L. Hay, J. A. von Fraunhofer, N. Chegini, and B. J. Masterson, J. Biomed. Mater. Res., 22, 179 (1988)
  8. D. A. Barrera, E. Zylstra, P. T. Lansbury, and R. Langer, J. Am. Chem. Soc., 115, 11010 (1993) https://doi.org/10.1021/ja00076a077
  9. D. A. Barrera, E. Zylstra, P. T. Lansbury, and R. Langer, Macromolecules, 28, 425 (1995) https://doi.org/10.1021/ma00106a004
  10. J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998) https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.0.CO;2-D
  11. G. Chen, T. Ushida, and T. Tateishi, Macromol. Biosci., 2, 67 (2002) https://doi.org/10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F
  12. J. P. Nuutinen, C. Clerc, T. Virta, and P. Tormala, J. Biomater. Sci. Polym. Edn, 13, 1325 (2002) https://doi.org/10.1163/15685620260449723
  13. Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials, 24, 3725 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  14. H. Chim, J. L. Ong, J.-T. Schantz, D. W. Hutmacher, and C. M. Agrawal, J. Biomed. Mater. Res., 65A, 327 (2003) https://doi.org/10.1002/jbm.a.10478
  15. C. E. Holy, C. Cheng, J. E. Davies, and M. S. Shoichet, Biomaterials, 22, 25 (2001) https://doi.org/10.1016/S0142-9612(00)00074-0
  16. M. B. O. Riekerink, M. B. Claase, G. H. Engbers, D. W. Grijpma, and J. Feijen, J. Biomed. Mater. Res., 65A, 417 (2003) https://doi.org/10.1002/jbm.a.10520
  17. M. D. Pierschbacher and E. Ruoslahti, Nature, 309, 30 (1984) https://doi.org/10.1038/309030a0
  18. U. Hersel, C. Dahman, and H. Kessle, Biomaterials, 24, 4385 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  19. H. S. Shin, S. B. Jo, and A. G. Mi�2C Biomaterials, 24, 4353 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  20. D. J. Mooney, K. Sano, P. M. Kaufmann, K. Majahod, B. Schloo, J. P. Vacanti, and R. Langer, J. Biomed. Mater. Res., 37, 413 (1997) https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<413::AID-JBM12>3.0.CO;2-C
  21. S. P. Massia and J. A. Hubbell, Anal. Biochem., 187, 292 (1990) https://doi.org/10.1016/0003-2697(90)90459-M
  22. S. P. Massia and J. A. Hubbell, J. Cell. Biol., 114, 1089 (1991) https://doi.org/10.1083/jcb.114.5.1089
  23. M. Gumupderelioolu and H. Turkoolu, Biomaterials, 23, 3927 (2002) https://doi.org/10.1016/S0142-9612(02)00128-X
  24. Cell Proliferation Reagent WST-1 technical bulletin, Roche Diagnostic GmbH, Germany
  25. I. Bisson, M. Kosinshi, S. Ruault, B. Gupta, J. Hilborn, F. Wurm, and P. Frey, Biomaterials, 23, 3149 (2002) https://doi.org/10.1016/S0142-9612(02)00061-3
  26. C. E. Holy, C. Cheong, J. E. Davies, and M. S. Shoichet, Biomaterials, 22, 25 (2001) https://doi.org/10.1016/S0142-9612(00)00074-0
  27. M. B. O. Reikerink, M. B. Claase, G. H. Engbers, D. W. Grijpma, and J. Feijen, J. Biomed. Mater. Res., 65A, 417 (2003) https://doi.org/10.1002/jbm.a.10520
  28. M. Kantlehner, P. Schaffner, D. Finsinger, J. Meyer, A. Jonczyk, B. Diefenbach, B. Nies, G. Holzemann, S. L. Goodman, and H. Kessler, ChemBioChem., 1, 107 (2000) https://doi.org/10.1002/1439-7633(20000818)1:2<107::AID-CBIC107>3.0.CO;2-4
  29. B. Jeschke, J. Meyer, A. Jonczyk, H. Kessler, P. Adamietz, N. M. Meenen, M. Kantlehner, C. Geopfert, and B. Nies, Biomaterials, 23, 3455 (2002) https://doi.org/10.1016/S0142-9612(02)00052-2
  30. C. Elvira, F. Yi, M. C. Azevedo, L. Rebouta, A. M. Cunha, J. S. Roman, and R. Reis, J. Mater. Sci. Mater. Med., 14, 187 (2003) https://doi.org/10.1023/A:1022036300783
  31. G. C. M. Steffens, L. Nothdurft, G. Buse, H. Thissen, H. Hocher, and D. Klee, Biomaterials, 23, 3523 (2002) https://doi.org/10.1016/S0142-9612(02)00091-1
  32. G. Marletta, G. Ciapetti, C. Satriano, S. Pagani, and N. Baldini, Biomaterials, 26, 4793 (2005) https://doi.org/10.1016/j.biomaterials.2004.11.047
  33. Z. Ma, C. Cao, J Yuan, J. Ji, Y. Gong, and J. Shen, J. Appl. Polym. Sci., 85, 2163 (2002) https://doi.org/10.1002/app.10803
  34. S. Aksoy, H. Tumturk, and N. Hasirci, J. Biotech., 60, 37 (1998) https://doi.org/10.1016/S0168-1656(97)00179-X
  35. A. Rezania and K. E. Healy, J. Biomed. Mater. Res., 52, 595 (2000) https://doi.org/10.1002/1097-4636(20001215)52:4<595::AID-JBM3>3.0.CO;2-3
  36. J. A. Hubbell, Trends Polym. Sci., 2, 20 (1994)
  37. J. A. Hubbell, Bio/Technology, 13, 565 (1995) https://doi.org/10.1038/nbt0695-565