Browse > Article
http://dx.doi.org/10.5762/KAIS.2015.16.4.2958

Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid  

Xie, Yuying (Dept. of Environmental Eng., Sunmoon University)
Park, Jong-Soon (GLO-ONE Co. Ltd.)
Kang, Soon-Kook (Dept. of Environmental Eng., Sunmoon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.16, no.4, 2015 , pp. 2958-2965 More about this Journal
Abstract
The PLGA(Poly lactide-co-glycolide) Copolymer have been actively applied to the medical implant material as biomaterials. PLGA membrane was able to alveoloplasty with osteotomy for favorable degradation characteristics and possibilities for sustained drug delivery. In this study, PLGA membrane was prepared using phase inversion method, and examined to optical method analysis(NMR, IR), mechanical property measurement (tearing strength) and thermal characteristic analysis(DSC). In addition, the biodegradation characteristics of the PLGA membrane filled with a PBS(Phosphate Buffered Solution) of the water bath ($60^{\circ}C$) according to the degree of surface degradation in the degradation time, the pH change of the solution and change of the mass of the membrane were measured.
Keywords
Biodegradation; PLGA Membrane; Physical Properties; Phase inversion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Merkli A, Tabatabay C, Gurny R, Heller J. Biodegradable polymers for the controlled release of ocular drugs. Prog Polym Sci 1998; 23(3):563e80.   DOI
2 C.S. Proikakis, N.J. Mamouzelos, P.A. Tarantili, A.G. Andreopoulos. Swelling and hydrolytic degradation of poly(D,L-lactic acid) in aqueous solutions. Polymer Degradation and Stability 91 (2006) 614e619 DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.060   DOI
3 Griffith LG. Polymeric biomaterials. Acta Mater 2000;48(1):263e77.   DOI
4 Merkli A, Tabatabay C, Gurny R, Heller J. Biodegradable polymers for the controlled release of ocular drugs. Prog Polym Sci 1998;23(3): 563e80. DOI: http://dx.doi.org/10.1016/S0079-6700(97)00048-8   DOI
5 Bouissou, C.; Rouse, J.J.; Price, R.; van der Walle, C.F. The influence of surfactant on PLGA microsphere glass transition and water sorption: Remodeling the surface morphology to attenuate the burst release. Pharm. Res. 2006, 23, 1295-1305. DOI: http://dx.doi.org/10.1007/s11095-006-0180-2   DOI
6 Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lacti de-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475--2490. DOI: http://dx.doi.org/10.1016/S0142-9612(00)00115-0   DOI
7 Ruhe, P.Q.; Hedberg, E.L.; Padron, N.T.; Spauwen, P.H.; Jansen, J.A.; Mikos, A.G. rhBMP-2 release from injectable poly (D,L -lactic-co-glycolic acid)/calcium-phosphate cement composites. J. Bone Jt. Surg. 2003, 85, 75--81.
8 Williams DF. The Williams dictionary of biomaterials. Liverpool: Liverpool University Press; 1999.
9 Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules 2005;6: 538-546. DOI: http://dx.doi.org/10.1021/bm0494702   DOI
10 Lakshmi S. Nair, Cato T. Laurencin. Biodegradable polymers as biomaterials.Prog. Polym. Sci. 32 (2007) 762-.798   DOI
11 Domb AJ, Wiseman DM, editors. Handbook of Biodegradable Polymers. Boca Raton: CRC Press; 1998.
12 Piskin E. Biodegradable polymers as biomaterials. J Biomat Sci Polym Ed 1995;6:775-.95.   DOI
13 John C. Middleton, Arthur J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21 (2000) 2335}2346   DOI
14 Heller J, Daniels AU. Poly(orthoesters). In: Shalaby SW, editor. Biomedical polymers. Designed to degrade systems. New York: Hanser, 1994. p. 35}68.
15 Marina Sokolsky-Papkov, Kapil Agashi, Andrew Olaye, Kevin Shakesheff, Abraham J. Domb. Polymer carriers for drug delivery in tissue engineering. Advanced Drug Delivery Reviews 59 (2007) 187-206 DOI: http://dx.doi.org/10.1016/j.addr.2007.04.001   DOI
16 C.S. Proikakis, N.J. Mamouzelos, P.A. Tarantili, A.G. Andreopoulos. Swelling and hydrolytic degradation of poly(D,L-lactic acid) in aqueous solutions. Polymer Degradation and Stability 91 (2006) 614e619. DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.060   DOI
17 Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 2005;26:1925-133. DOI: http://dx.doi.org/10.1016/j.biomaterials.2004.06.021   DOI
18 Lakshmi S. Nair, Cato T. Laurencin. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32 (2007) 762-98 DOI: http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017   DOI
19 Schliecker G, Schmidt C, Fuchs St, Kissel T. Characterization of a homologous series of D,L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials 2003;24(21):3835e44   DOI
20 Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deli Rev 1997; 28:5-24. DOI: http://dx.doi.org/10.1016/S0169-409X(97)00048-3   DOI
21 Hoon You, Eun-Ung Lee, You-Kyoung Kim, Bum-Chul Kim, Jin-Young Park, Hyun-Chang Li m, Jung-Seok Lee, InSup Noh, Ui-Won Jung and Seong-Ho Choi. Biocompatibility and resorption pattern of newly developed hyaluronic acid hy drogel reinforced three-layer poly (lactid e-co-glycolide) membrane: histologic observation in rabbit calvarial defect model. You et al. Biomaterials Research 2014, 18:12. DOI: http://dx.doi.org/10.1186/2055-7124-18-12   DOI
22 Bruno Gasparini Betiatto de Sousa, Gabrielle Pedrotti, Ana Paula Sponchiado1, Rafael Schlogel Cunali, Aguedo Aragones, Joao Rodrigo Sarot, Joao Cezar Zielak, Barbara Pick Ornaghi, Moira Pedroso Leao. Analysis of tensile strength of poly(lactic-coglycolic acid) (PLGA) membranes used for guided tissue regeneration. Electronic version: 1984-5685 RSBO. 2014 Jan- Mar;11(1): 59-65.