• 제목/요약/키워드: Poly-gamma-glutamic acid ($\gamma$-PGA)

검색결과 44건 처리시간 0.024초

Synthesis of an Amphiphilic Poly(${\gamma}$-Glutamic Acid)-Cholesterol Conjugate and Its Application as an Artificial Chaperone

  • Lee, Eun-Hye;Kamigaito, Yoshiki;Tsujimoto, Takashi;Uyama, Hiroshi;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1424-1429
    • /
    • 2010
  • A poly(${\gamma}$-glutamic acid) (${\gamma}$PGA)-cholesterol conjugate was synthesized and its properties were then evaluated. The conjugate exhibited an amphiphilic nature derived from the hydrophilic ${\gamma}$PGA backbone and the hydrophobic cholesterol side chain. The conjugate spontaneously formed nanoparticles, becoming an aqueous solution when at low concentrations, and at high concentrations the result was the formation of a physical gel. By utilizing the self-aggregating properties of the conjugate in water, an artificial chaperone was developed. A complex of protein, with the nanoparticles of the conjugate, was formed and the protein was released upon the dissociation of the nanoparticles through the addition of ${\beta}$-cyclodextrin. For denatured carbonic anhydrase, the activity was recovered in the artificial chaperone of the nanoparticle conjugate.

고효율 Poly-$\gamma$-Glutamic Acid생산 균주의 분리 및 생산 특성 (Isolation of Bacillus sp. Producing Poly-$\gamma$-glutamic Acid with High Efficiency and Its Characterization)

  • 유경옥;오유나;김병우;남수완;전숭종;김동은;김영만;권현주
    • 한국미생물·생명공학회지
    • /
    • 제33권3호
    • /
    • pp.200-206
    • /
    • 2005
  • 한국 청국장에서 poly-$\gamma$-glutamic acid (PGA)를 대량 생산하는 세균을 분리하였다. 이 세균의 16s ribosomal RNA 서열을 분석한 결과 Bacillus subtilis BFAS, B. subtilis MO4와 B. amyloliquefaciens B128과 99.0, 97.7 그리고 $97.3{\%}$의 상동성을 각각 나타내었다. 따라서 본 분리 균주를 Bacillus sp.로 동정하고 Bacillus sp. YN-1로 명명하였다. PGA 대량생산 을 위해 생산 조건을 검토한 결과 $3{\%}$ glutamic acid, $4{\%}$ fructose를 탄소원으로 첨가하였을 때 최대량의 PGA를 생산하는 것을 알 수 있었다. 또한 PGA 최대 생산량은 최적 배양 조건에서 27 g/l의 양으로 생산되어 본 균주는 PGA 대량 생산에 적합한 세균임을 확인할 수 있었으며 식품 및 화장품 산업에 유용하게 사용할 수 있을 것으로 사료된다.

High Molecular Weight Poly-Gamma-Glutamic Acid Regulates Lipid Metabolism in Rats Fed a High-Fat Diet and Humans

  • Park, Ji-Ho;Choi, Jae-Chul;Sung, Moon-Hee;Kang, Jae-Heon;Chang, Moon-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권7호
    • /
    • pp.766-775
    • /
    • 2011
  • We investigated the effect of high molecular weight polygamma- glutamic acid (hm ${\gamma}$-PGA) on adiposity and lipid metabolism of rats in the presence of an obesity-inducing diet. Thirty-two Sprague-Dawley rats were fed either a normal-fat (11.4% kcal fat, NFC) or high-fat (51% kcal fat, HFC) diet. After 5 weeks, half of each diet-fed group was treated with hm ${\gamma}$-PGA (NFP or HFP) for 4 weeks. The HFC group had significantly higher body weight, visceral fat mass, fasting serum levels of total cholesterol, LDL cholesterol, and leptin, and lower serum HDL cholesterol level compared with those of the NFC group (p < 0.05). Treatment with hm ${\gamma}$-PGA decreased body weight gain and perirenal fat mass (p<0.05), fasting serum total cholesterol, and mRNA expression of glucose-6- phosphate dehydrogenase (G6PD), regardless of dietary fat contents (p < 0.01). However, hm ${\gamma}$-PGA increased serum HDL cholesterol in the HFC group (p < 0.05). In vitro, 3-hydroxy-3-methylglutaryl coenzyme-A (HMGCoA) reductase activity was suppressed by the addition of hm ${\gamma}$-PGA. In agreement with observations in animal study, the supplementation of hm ${\gamma}$-PGA (150 mg/day) to 20 female subjects in an 8-week double-blind, placebocontrolled study resulted in a tendency to decrease total cholesterol and LDL cholesterol concentrations. We thus conclude that dietary supplementation of hm ${\gamma}$-PGA may act as a hypocholestrolemic agent, secondary to its inhibitor effect on HMG-CoA reductase, and decrease abdominal adiposity by decreasing hepatic lipogenesis. The present study is an important first step in establishing the effect of hm ${\gamma}$-PGA on cholesterol levels in rats and humans.

Fabrication of Poly(${\gamma}$-glutamic acid) Monolith by Thermally Induced Phase Separation and Its Application

  • Park, Sung-Bin;Fujimoto, Takashi;Mizohata, Eiichi;Inoue, Tsuyoshi;Sung, Moon-Hee;Uyama, Hiroshi
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.942-952
    • /
    • 2013
  • Monoliths are functional porous materials with a three-dimensional continuous interconnected pore structure in a single piece. A monolith with uniform shape based on poly(${\gamma}$-glutamic acid) (PGA) has been prepared via a thermally induced phase separation technique using a mixture of dimethyl sulfoxide, water, and ethanol as solvent. The morphology of the obtained monolith was observed by scanning electron microscopy and the surface area of the monolith was evaluated by the Brunauer Emmett Teller method. The effects of fabrication parameters such as the concentration and molecular mass of PGA and the solvent composition have been systematically investigated. The PGA monolith was cross-linked with hexamethylene diisocyanate to produce the water-insoluble monolith. The addition of sodium chloride to the phase separation solvent affected the properties of the cross-linked monolith. The swelling ratio of the cross-linked monolith toward aqueous solutions depended on the buffer pH as well as the monolith fabrication condition. Copper(II) ion was efficiently adsorbed on the cross-linked PGA monolith, and the obtained copper-immobilized monolith showed strong antibacterial activity for Escherichia coli. By combination of the characteristic properties of PGA (e.g., high biocompatibility and biodegradability) and the unique features of monoliths (e.g., through-pore structure, large surface area, and high porosity with small pore size), the PGA monolith possesses large potentials for various industrial applications in the biomedical, environmental, analytical, and separation fields.

Characteristics of Hydrogel Prepared from Microbial Poly($\gamma$-glutamic acid) by Chemical Crosslinker

  • Park, Jong-Soo;Choi, Seong-Hyun;Choi, Woo-Young;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.213-217
    • /
    • 2005
  • Microbial hydrogel was prepared with poly(${\gamma}$-glutamic acid) produced from Bacillus subtilis BS62 using crosslinking reagent, ethylene glycol diglycidyl ether (EGDE), and its physico-chemical characteristics were examined. Hydrogel which prepared from 10 grams of 10% PGA solution with $600\;{\mu}l$ of EGDE at $50^{\circ}C$ for 17 h swelled 4,320 times its dry weight, and time to reach swelling equilibrium in deionized water at 4 to $45^{\circ}C$ range was about 20 h. Swollen hydrogel shrunk in ionic solutions, and rate of shrinkage was higher in calcium chloride solution than sodium chloride solution. Swelling rate of hydrogel increased 1.3-fold of initial swelling rate for 30 min at $80^{\circ}C$.

${\gamma}-Poly(glutamic\;acid)$ 생산성 균주 Bacillus licheniformis 9945a의 형질전환 미 돌연변이 유도 (Transformation and Mutation of Bacillus licheniformis 9945a Producing ${\gamma}-Poly(glutamic\;acid)$)

  • 정완석;고영환
    • Applied Biological Chemistry
    • /
    • 제40권3호
    • /
    • pp.173-177
    • /
    • 1997
  • Bacillus licheniformis 9945a는 액체배양시 ${\gamma}-poly(glutamic\;acid)$를 균체외로 분비하며, 한천배지에 고체 배양시는 점액질의 군락을 나타낸다. 점액질의 Bacillus속 세균의 형질전환은 그리 순하지 않은 것으로 알려져 있으며, B. licheniformis에서의 trasposon Tn10의 활성여부도 알려져 있지 않다. 그래서 점액질을 분비하지 않는, B. licheniformis의 자연발생적 변이주를 우선 분리하였다. Mini-Tn10을 함유한 plasmid pHV1248을 protoplast transformation법에 준해서 이 변이주에 도입하여 형질전환체를 분리하였다. pHV1248을 함유한 형질전환체를 점액성의 야생형질로 복귀시킨 후에, 가열처리함으로써 무작위 돌연변이를 유도하였다. Arginine, lysine 또는 tryptohan을 생육인자로 요구하는 돌연변이주들이 replica plating method에 의해서 분리되었고, 이 들 영양요구성 변이주는 mini-Tn10이 염색체 DNA상에 삽입됨으로써 생겨났음이 Southern blotting과 DNA-DNA 혼성화 실험으로 증명되었다. 이러한 pHV1248을 이용한 형질전환 및 돌연변이 유도방법은 Bacillus licheniformis 9945a의 다양한 변이체를 얻는데 유용할 것이다.

  • PDF

키토산/폴리감마글루탐산 나노입자의 제조 및 중금속 제거에의 응용 (Preparation of Chitosan/Poly-${\gamma}$-glutamic Acid Nanoparticles and Their Application to Removal of Heavy Metals)

  • 성익경;송재용;김범수
    • Korean Chemical Engineering Research
    • /
    • 제49권4호
    • /
    • pp.475-479
    • /
    • 2011
  • 키토산은 천연고분자 물질로 다양한 물리화학적(다중양이온, 반응성 수산화기와 아미노기 그룹), 생물학적(생리활성, 생체적합성, 생분해성) 특성을 가지고 있다. 본 연구에서는 겔형성제로 폴리감마글루탐산을 이용하여 키토산 나노입자를 제조하였다. 나노입자는 폴리감마글루탐산의 카르복실기($-COO^-$)와 키토산의 아미노기($-NH_3^+$)사이의 이온 상호작용에 의해 형성되었다. 키토산(0.1~1 g)을 100 ml 아세트산 용액(1% v/v)에 첨가한 후 상온에서 충분히 용해되도록 하룻밤 동안 교반하였다. 폴리감마글루탐산(0.1 g)은 상온에서 90 ml 증류수에 용해시켰다. 교반되고 있는 폴리감마글루탐산 용액에 키토산 용액을 주사바늘을 통해 상온에서 적가하였다. 입자의 평균 크기는 80~300 nm 범위에서 형성되었다. 키토산/폴리감마글루탐산 나노입자는 중금속 이온들($Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$, $Ni^{2+}$)의 제거를 위해 콜로이드 상태의 흡착 물질로 사용되었다. 나노입자의 중금속 제거 능력은 $Cu^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ > $Ni^{2+}$ > $Zn^{2+}$의 결과를 보였다.

Differences in Manufacturing Process and Quality between Cheonggukjang for Use in the Raw and Cheonggukjang for Stew

  • Seo, Byoung-Joo;Kim, Young-Ho;Kim, Jong-Kyu
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1279-1284
    • /
    • 2008
  • When cheonggukjgang was manufactured using a Bacillus subtilis CH10-1 starter culture, a short-term fermentation for 14-18 hr appeared to be the optimal for the raw cheonggukjang to avoid the formation of a bitter taste and to contain a high concentration of free sugars, whereas a long-term fermentation for more than 4 days was the optimal for the cheonggukjang for stew in order to contain a high concentration of free amino and organic acids, which are responsible for sweet, savory, and bitter tastes present in stewed cheonggukjang, During activation of murine splenic T cells with phytohemagglutinin (PHA), the presence of either poly-$\gamma$-glutamic acid ($\gamma$-PGA) or partially hydrolyzed $\gamma$-PGA resulted in reduction in the level of interferon-$\gamma$ production and enhancement in the level of interleukin-5 production, possibly due to suppression of Th1 activity and augmentation of Th2 activity. Taken together these results indicate that the raw cheonggukjang and the cheonggukjang for stew are different in their quality and taste as well as immunomodulating activity.

High-Molecular-Weight Poly-Gamma-Glutamate Protects Against Hypertriglyceridemic Effects of a High-Fructose Diet in Rat

  • Jeon, Yeong Hui;Kwak, Mi-Sun;Sung, Moon-Hee;Kim, Sun-Hee;Kim, Myung-Hwan;Chang, Moon-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.785-793
    • /
    • 2013
  • We studied the effects of 2 different dosages of high-molecular-weight poly-${\gamma}$-glutamic acid (hm ${\gamma}$-PGA) derived from Bacillus subtilis chungkookjang on lipid metabolism in a high-fructose diet-induced hypertriglyceridemic animal model. For 4 weeks, rats were fed either AIN-93 diet (normal control, NC; n = 10) or modified AIN-93 diet in which cornstarch was substituted with 63% fructose (n = 30) to induce hypertriglyceridemia. After 4 weeks, the hypertriglyceridemic rats were treated with daily oral doses of 0 mg (hypertriglyceridemic control, HC), 2.5 mg (hypertriglyceridemic, low hm ${\gamma}$-PGA, HL), or 5 $mg{\cdot}kg{\cdot}bw^{-1}{\cdot}d^{-1}$ (hypertriglyceridemic, high hm ${\gamma}$-PGA, HH) hm ${\gamma}$-PGA for 4 weeks. The HL and HH groups exhibited significantly lower levels of serum triglyceride, total cholesterol, LDL cholesterol, and free fatty acids than the HC group. The administration of hm ${\gamma}$-PGA reduced serum ALT and AST levels. The activities of lipogenic enzymes such as hepatic malic enzyme and glucose-6-phosphate dehydrogenase as well as glucose-6-phosphate dehydrogenase mRNA expression were significantly decreased by hm ${\gamma}$-PGA administration (p < 0.05). These results indicate that hm ${\gamma}$-PGA has an anti-hypertriglyceridemic effect in high-fructose diet-induced hypertriglyceridemic rats.

생체조직공학적 응용을 위한 폴리감마글루탐산 다공성 지지제의 제조 (Fabrication of Poly(γ-glutamic acid) Porous Scaffold for Tissue Engineering Applications)

  • 전현애;이승욱;권오형
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.35-41
    • /
    • 2014
  • Poly(g-glutamic acid) (g-PGA) is a very promising biodegradable polymer that is produced by microorganism of Bacillus subtilis. Because g-PGA is water-soluble, anionic, biodegradable, and even edible, its potential applications have been studied from an industrial standpoint. In this study, we fabricated porous g-PGA foams by means of a freeze-solvent extraction method for tissue-engineering applications. Porous g-PGA foams were chemically cross-linked using a hexamethylene diisocyanate solution. An aqueous basic solution was used to neutralize g-PGA foam for cell culturing. During an in vitro cell culture study, it was observed that primary rabbit ear chondrocytes were well at tached and spread over the surface oft hree-dimensional cross-linkedg-PGA foam. From these results, it is concluded that cross-linkedg-PGA foam is aprom is in gmaterial for tissue-engineering applications, especially those pertaining to the regeneration of human cartilage.