Fabrication of Poly( |
Park, Sung-Bin
(Department of Applied Chemistry, Graduate School of Engineering, Osaka University)
Fujimoto, Takashi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) Mizohata, Eiichi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) Inoue, Tsuyoshi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) Sung, Moon-Hee (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University) Uyama, Hiroshi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) |
1 | Buchmeiser MR. 2007. Polymeric monolithic materials: Syntheses, properties, functionalization and applications. Polymer 48: 2187-2198. DOI ScienceOn |
2 |
Ashiuchi M, Kamei T, Misono H. 2003. Poly- |
3 |
Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, et al. 2001. Physiological and biochemical characteristics of poly- |
4 |
Bae SR, Park C, Choi JC, Poo H, Kim CJ, Sung MH. 2010. Effects of ultra high molecular weight poly- |
5 | Courtois J, Bystrom E, Irgum K. 2006. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer 47: 2603-2611. DOI ScienceOn |
6 | Candela T, Fouet A. 2006. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60: 1091-1098. DOI ScienceOn |
7 | Cao L, Shi Y, Geng JQ, Yang D. 2011. Fabrication of silica monolithic columns with ordered meso/macropore structure. Mater. Chem. Phys. 130: 1280-1286. DOI ScienceOn |
8 | Cao B, Yin J, Yan S, Cui L, Chen X, Xie Y. 2011. Porous scaffolds based on cross-linking of poly(L-glutamic acid). Macromol. Biosci. 11: 427-434. DOI ScienceOn |
9 |
Du W R, X u YL, Xu Z R, F an C L. 2008. Preparation, characterization and antibacterial properties against E.coli |
10 |
Hayes JR, Nyce GW, Kuntz JD, Satcher JH, Hamza AV. 2007. Synthesis of bi-modal nanoporous Cu, CuO and |
11 | Holland B. 2003. Determination of both mesopores and macropores in three-dimensional ordered porous materials by nitrogen adsorption. J. Porous Mater. 10: 17-22. DOI ScienceOn |
12 | Khalfaoui M, Knani S, Hachicha MA, Lamine AB. 2003. New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. J. Colloid Interface Sci. 263: 350-356. DOI ScienceOn |
13 | Kunioka M. 2004. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol. Biosci. 4: 324-329. DOI ScienceOn |
14 |
Murakami S, Aoki N. 2006. Bio-based hydrogels prepared by cross-linking of microbial poly( |
15 |
Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, et al. 2012. Unprecedented |
16 |
Lee EH, Kamigaito Y, Tsujimoto T, Uyama H, Sung MH. 2010. Synthesis of an amphiphilic poly( |
17 |
Lee EH, Uyama H, Kwon OH, Sung MH. 2009. Fabrication of ultrafine fibers of poly( |
18 | Nandi M, Okada K, Uyama H. 2011. Functional mesoporous polymer monolith for application in ion-exchange and catalysis. Funct. Mater. Lett. 4: 407-410. DOI |
19 | Okada K, Nandi M, Maruyama J, Oka T, Tsujimoto T, Kondoh K, et al. 2011. Fabrication of mesoporous polymer monolith: A template-free approach. Chem. Commun. 47: 7422-7424. DOI ScienceOn |
20 |
Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, et al. 2010. New biological functions and applications of highmolecular-mass poly- |
21 | Potter OG, Hilder EF. 2008. Porous polymer monoliths for extraction: Diverse applications and platforms. J. Sep. Sci. 31: 1881-1906. DOI ScienceOn |
22 | Qiu Y, Park K. 2001. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53: 321-339. DOI ScienceOn |
23 |
Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. 2005. Natural and edible biopolymer poly- |
24 | Svec F. 2010. Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J. Chromatogr. A 1217: 902-924. DOI ScienceOn |
25 |
Shih IL, Van YT. 2001. The production of poly-( |
26 | Sugino A, Miyazaki T, Ohtsuki C. 2008. Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment. J. Mater. Sci. Mater. Med. 19: 2269-2274. DOI |
27 | Sun X, Fujimoto T, Uyama H. 2013. Fabrication of a poly(vinyl alcohol) monolith via thermally impacted nonsolvent-induced phase separation. Polym. J. DOI: 10.1038/pj. 2013.18 |
28 | Svec F, Huber CG. 2006. Monolithic materials: Promises, challenges, achievements. Anal. Chem. 78: 2100-2107. DOI ScienceOn |
29 |
Tajima T, Ueno S, Yabu N, Sukigara S, Ko F. 2011. Fabrication and characterization of poly- |
30 | Tillet G, Boutevin B, Ameduri B. 2011. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog. Polym. Sci. 36: 191-217. DOI ScienceOn |
31 |
Tsujimoto T, Kimura J, Takeuchi Y, Uyama H, Park C, Sung MH. 2010. Chelation of calcium ions by poly( |
32 | Xin Y, Uyama H. 2012. Fabrication of polycarbonate and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blend monolith via non-solvent-induced phase separation method. Chem. Lett. 41: 1509-1511. DOI |
33 | Uyama H. 2010. Polymeric monolith: New fabrication methods and applications. Kobunshi Ronbunshu 67: 489-496. DOI |
34 | Wei S, Zhang YL, Ding H, Liu J, Sun J, He Y, et al. 2011. Solvothermal fabrication of adsorptive polymer monolith with large nanopores towards biomolecules immobilization. Colloids Surf. A 380: 29-34. DOI ScienceOn |
35 | Xu F, Zhang N, Long Y, Si Y, Liu Y, Mi X, et al. 2011. Porous CS monoliths and their adsorption ability for heavy metal ions. J. Hazard. Mater. 188: 148-155. DOI ScienceOn |
36 | Xin Y, Fujimoto T, Uyama H. 2012. Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer 53: 2847-2853. DOI ScienceOn |
37 | Xin Y, Uyama H. 2013. Fabrication of polyethyleniminemodified monolith and its application for copper ion adsorption. Polym. Res. J. [In Press.] |
![]() |