DOI QR코드

DOI QR Code

Fabrication of Poly(${\gamma}$-glutamic acid) Monolith by Thermally Induced Phase Separation and Its Application

  • Park, Sung-Bin (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) ;
  • Fujimoto, Takashi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) ;
  • Mizohata, Eiichi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) ;
  • Inoue, Tsuyoshi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) ;
  • Sung, Moon-Hee (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University) ;
  • Uyama, Hiroshi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University)
  • Received : 2013.02.14
  • Accepted : 2013.05.10
  • Published : 2013.07.28

Abstract

Monoliths are functional porous materials with a three-dimensional continuous interconnected pore structure in a single piece. A monolith with uniform shape based on poly(${\gamma}$-glutamic acid) (PGA) has been prepared via a thermally induced phase separation technique using a mixture of dimethyl sulfoxide, water, and ethanol as solvent. The morphology of the obtained monolith was observed by scanning electron microscopy and the surface area of the monolith was evaluated by the Brunauer Emmett Teller method. The effects of fabrication parameters such as the concentration and molecular mass of PGA and the solvent composition have been systematically investigated. The PGA monolith was cross-linked with hexamethylene diisocyanate to produce the water-insoluble monolith. The addition of sodium chloride to the phase separation solvent affected the properties of the cross-linked monolith. The swelling ratio of the cross-linked monolith toward aqueous solutions depended on the buffer pH as well as the monolith fabrication condition. Copper(II) ion was efficiently adsorbed on the cross-linked PGA monolith, and the obtained copper-immobilized monolith showed strong antibacterial activity for Escherichia coli. By combination of the characteristic properties of PGA (e.g., high biocompatibility and biodegradability) and the unique features of monoliths (e.g., through-pore structure, large surface area, and high porosity with small pore size), the PGA monolith possesses large potentials for various industrial applications in the biomedical, environmental, analytical, and separation fields.

Keywords

References

  1. Ashiuchi M, Kamei T, Misono H. 2003. Poly-${\gamma}$-glutamate synthetase of Bacillus subtilis. J. Mol. Catal. B Enzym. 23: 101-106. https://doi.org/10.1016/S1381-1177(03)00076-6
  2. Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, et al. 2001. Physiological and biochemical characteristics of poly-${\gamma}$-glutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 268: 5321-5328. https://doi.org/10.1046/j.0014-2956.2001.02475.x
  3. Bae SR, Park C, Choi JC, Poo H, Kim CJ, Sung MH. 2010. Effects of ultra high molecular weight poly-${\gamma}$-glutamic acid from Bacillus subtilis (chungkookjang) on corneal wound healing. J. Microbiol. Biotechnol. 20: 803-808.
  4. Buchmeiser MR. 2007. Polymeric monolithic materials: Syntheses, properties, functionalization and applications. Polymer 48: 2187-2198. https://doi.org/10.1016/j.polymer.2007.02.045
  5. Candela T, Fouet A. 2006. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60: 1091-1098. https://doi.org/10.1111/j.1365-2958.2006.05179.x
  6. Cao L, Shi Y, Geng JQ, Yang D. 2011. Fabrication of silica monolithic columns with ordered meso/macropore structure. Mater. Chem. Phys. 130: 1280-1286. https://doi.org/10.1016/j.matchemphys.2011.09.015
  7. Cao B, Yin J, Yan S, Cui L, Chen X, Xie Y. 2011. Porous scaffolds based on cross-linking of poly(L-glutamic acid). Macromol. Biosci. 11: 427-434. https://doi.org/10.1002/mabi.201000389
  8. Courtois J, Bystrom E, Irgum K. 2006. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer 47: 2603-2611. https://doi.org/10.1016/j.polymer.2006.01.096
  9. Du W R, X u YL, Xu Z R, F an C L. 2008. Preparation, characterization and antibacterial properties against E.coli $K_{88}$ of chitosan nanoparticle loaded copper ions. Nanotechnology 19: 085707. https://doi.org/10.1088/0957-4484/19/8/085707
  10. Hayes JR, Nyce GW, Kuntz JD, Satcher JH, Hamza AV. 2007. Synthesis of bi-modal nanoporous Cu, CuO and $Cu_2O$ monoliths with tailored porosity. Nanotechnology 18: 275602. https://doi.org/10.1088/0957-4484/18/27/275602
  11. Holland B. 2003. Determination of both mesopores and macropores in three-dimensional ordered porous materials by nitrogen adsorption. J. Porous Mater. 10: 17-22. https://doi.org/10.1023/A:1024027213122
  12. Khalfaoui M, Knani S, Hachicha MA, Lamine AB. 2003. New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. J. Colloid Interface Sci. 263: 350-356. https://doi.org/10.1016/S0021-9797(03)00139-5
  13. Kunioka M. 2004. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol. Biosci. 4: 324-329. https://doi.org/10.1002/mabi.200300121
  14. Lee EH, Kamigaito Y, Tsujimoto T, Uyama H, Sung MH. 2010. Synthesis of an amphiphilic poly(${\gamma}$-glutamic acid)-cholesterol conjugate and its application as an artificial chaperone. J. Microbiol. Biotechnol. 20: 1424-1429. https://doi.org/10.4014/jmb.1006.06004
  15. Lee EH, Uyama H, Kwon OH, Sung MH. 2009. Fabrication of ultrafine fibers of poly(${\gamma}$-glutamic acid) and its derivative by electrospinning. Polym. Bull. 63: 735-742. https://doi.org/10.1007/s00289-009-0112-5
  16. Murakami S, Aoki N. 2006. Bio-based hydrogels prepared by cross-linking of microbial poly(${\gamma}$-glutamic acid) with various saccharides. Biomacromolecules 7: 2122-2127. https://doi.org/10.1021/bm0600264
  17. Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, et al. 2012. Unprecedented $CO_2$ uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem. Commun. 48: 10283-10285. https://doi.org/10.1039/c2cc35334b
  18. Nandi M, Okada K, Uyama H. 2011. Functional mesoporous polymer monolith for application in ion-exchange and catalysis. Funct. Mater. Lett. 4: 407-410. https://doi.org/10.1142/S1793604711002317
  19. Okada K, Nandi M, Maruyama J, Oka T, Tsujimoto T, Kondoh K, et al. 2011. Fabrication of mesoporous polymer monolith: A template-free approach. Chem. Commun. 47: 7422-7424. https://doi.org/10.1039/c1cc12402a
  20. Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, et al. 2010. New biological functions and applications of highmolecular-mass poly-${\gamma}$-glutamic acid. Chem. Biodivers. 7: 1555-1562. https://doi.org/10.1002/cbdv.200900283
  21. Potter OG, Hilder EF. 2008. Porous polymer monoliths for extraction: Diverse applications and platforms. J. Sep. Sci. 31: 1881-1906. https://doi.org/10.1002/jssc.200800116
  22. Qiu Y, Park K. 2001. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53: 321-339. https://doi.org/10.1016/S0169-409X(01)00203-4
  23. Shih IL, Van YT. 2001. The production of poly-(${\gamma}$-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225. https://doi.org/10.1016/S0960-8524(01)00074-8
  24. Sugino A, Miyazaki T, Ohtsuki C. 2008. Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment. J. Mater. Sci. Mater. Med. 19: 2269-2274. https://doi.org/10.1007/s10856-007-3327-8
  25. Sun X, Fujimoto T, Uyama H. 2013. Fabrication of a poly(vinyl alcohol) monolith via thermally impacted nonsolvent-induced phase separation. Polym. J. DOI: 10.1038/pj. 2013.18
  26. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. 2005. Natural and edible biopolymer poly-${\gamma}$-glutamic acid: Synthesis, production, and applications. Chem. Rec. 5: 352-366. https://doi.org/10.1002/tcr.20061
  27. Svec F. 2010. Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J. Chromatogr. A 1217: 902-924. https://doi.org/10.1016/j.chroma.2009.09.073
  28. Svec F, Huber CG. 2006. Monolithic materials: Promises, challenges, achievements. Anal. Chem. 78: 2100-2107. https://doi.org/10.1021/ac069383v
  29. Tajima T, Ueno S, Yabu N, Sukigara S, Ko F. 2011. Fabrication and characterization of poly-${\gamma}$-glutamic acid nanofiber. J. Appl. Polym. Sci. 122: 150-158. https://doi.org/10.1002/app.34176
  30. Tillet G, Boutevin B, Ameduri B. 2011. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog. Polym. Sci. 36: 191-217. https://doi.org/10.1016/j.progpolymsci.2010.08.003
  31. Tsujimoto T, Kimura J, Takeuchi Y, Uyama H, Park C, Sung MH. 2010. Chelation of calcium ions by poly(${\gamma}$-glutamic acid) from Bacillus subtilis (chungkookjang). J. Microbiol. Biotechnol. 20: 1436-1439. https://doi.org/10.4014/jmb.1004.04043
  32. Uyama H. 2010. Polymeric monolith: New fabrication methods and applications. Kobunshi Ronbunshu 67: 489-496. https://doi.org/10.1295/koron.67.489
  33. Wei S, Zhang YL, Ding H, Liu J, Sun J, He Y, et al. 2011. Solvothermal fabrication of adsorptive polymer monolith with large nanopores towards biomolecules immobilization. Colloids Surf. A 380: 29-34. https://doi.org/10.1016/j.colsurfa.2011.01.059
  34. Xin Y, Fujimoto T, Uyama H. 2012. Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer 53: 2847-2853. https://doi.org/10.1016/j.polymer.2012.04.029
  35. Xin Y, Uyama H. 2012. Fabrication of polycarbonate and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blend monolith via non-solvent-induced phase separation method. Chem. Lett. 41: 1509-1511. https://doi.org/10.1246/cl.2012.1509
  36. Xin Y, Uyama H. 2013. Fabrication of polyethyleniminemodified monolith and its application for copper ion adsorption. Polym. Res. J. [In Press.]
  37. Xu F, Zhang N, Long Y, Si Y, Liu Y, Mi X, et al. 2011. Porous CS monoliths and their adsorption ability for heavy metal ions. J. Hazard. Mater. 188: 148-155. https://doi.org/10.1016/j.jhazmat.2011.01.094

Cited by

  1. Hierarchical porous cellulose/activated carbon composite monolith for efficient adsorption of dyes vol.24, pp.10, 2013, https://doi.org/10.1007/s10570-017-1410-y
  2. Hierarchical Porous Carbons from Poly(methyl methacrylate)/Bacterial Cellulose Composite Monolith for High-Performance Supercapacitor Electrodes vol.5, pp.10, 2013, https://doi.org/10.1021/acssuschemeng.7b02488
  3. An ideal enzyme immobilization carrier: a hierarchically porous cellulose monolith fabricated by phase separation method vol.90, pp.6, 2013, https://doi.org/10.1515/pac-2017-0710
  4. Christiansen Effect‐Based Physical Coloration of a Cellulosic Monolith Conveniently Fabricated Using Thermally Induced Phase Separation vol.221, pp.22, 2013, https://doi.org/10.1002/macp.202000272