Browse > Article
http://dx.doi.org/10.4014/jmb.1006.06004

Synthesis of an Amphiphilic Poly(${\gamma}$-Glutamic Acid)-Cholesterol Conjugate and Its Application as an Artificial Chaperone  

Lee, Eun-Hye (Department of Applied Chemistry, Graduate School of Engineering, Osaka University)
Kamigaito, Yoshiki (Department of Applied Chemistry, Graduate School of Engineering, Osaka University)
Tsujimoto, Takashi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University)
Uyama, Hiroshi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University)
Sung, Moon-Hee (Department of Bio & Nanochemistry, Kookmin University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.10, 2010 , pp. 1424-1429 More about this Journal
Abstract
A poly(${\gamma}$-glutamic acid) (${\gamma}$PGA)-cholesterol conjugate was synthesized and its properties were then evaluated. The conjugate exhibited an amphiphilic nature derived from the hydrophilic ${\gamma}$PGA backbone and the hydrophobic cholesterol side chain. The conjugate spontaneously formed nanoparticles, becoming an aqueous solution when at low concentrations, and at high concentrations the result was the formation of a physical gel. By utilizing the self-aggregating properties of the conjugate in water, an artificial chaperone was developed. A complex of protein, with the nanoparticles of the conjugate, was formed and the protein was released upon the dissociation of the nanoparticles through the addition of ${\beta}$-cyclodextrin. For denatured carbonic anhydrase, the activity was recovered in the artificial chaperone of the nanoparticle conjugate.
Keywords
Poly(${\gamma}$-glutamic acid); cholesterol; amphiphilic polymer; artificial chaperone;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Okoshi, K., N. Sano, T. Okumura, A. Tagaya, J. Magoshi, Y. Koike, M. Fujiki, and J. Watanabe. 2003. The Christiansen effect of brightly colored colloidal dispersion with an amphiphilic polymer. J. Colloid Interface Sci. 263: 473-477.   DOI   ScienceOn
2 Richard, A. and A. Margaritis. 2001. Poly(glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21: 219-232.   DOI   ScienceOn
3 Wetlaufer, D. B. and Y. Xie. 1995. Control of aggregation in protein refolding: A variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci. 4: 1535-1543.   DOI   ScienceOn
4 Ko, Y. H. and R. A. Gross. 1998. Effects of glucose and glycerol on $\gamma-poly(glutamic acid)$ formation by Bacillus licheniformis ATCC 9945a. Biotechnol. Bioeng. 57: 430-437.   DOI   ScienceOn
5 Park, C., Y. H. Choi, H. J. Shin, H. Poo, J. J. Song, C. J. Kim, and M. H. Sung. 2005. Effect of high-molecular-weight $poly-\gamma- glutamic$ acid from Bacillus subtilis (chungkookjang) on Ca solubility and intestinal adsorption. J. Microbiol. Biotechnol. 15: 855-858.   과학기술학회마을
6 Sung, M. H., C. Park, C. J. Kim, H. Poo, K. Soda, and M. Ashiuchi. 2005. Natural and edible biopolymer$ poly-\gamma-glutamic $ acid: Synthesis, production, and applications. Chem. Rec. 5: 352-366.   DOI   ScienceOn
7 Van de Manakker, F., M. Van der Pot, T. Vermonden, C. F. Van Nostrum, and W. E. Hennink. 2008. Self-assembling hydrogels based on $\beta-cyclodextrin/cholesterol $ inclusion complexes. Macromolecules 41: 1766-1773.   DOI   ScienceOn
8 Liu, X.-M., K. P. Pramoda, Y.-Y. Yang, S. Y. Chow, and C. He. 2004. Cholesteryl-grafted functional amphiphilic poly(Nisoproprylacrylamide- co-N-hydroxylmethylacrylamide): Synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials 25: 2619-2628.   DOI   ScienceOn
9 Ohtani, Y., T. Irie, K. Uekama, K. Fukunaga, and J. Pitha. 1989. Differential effects of $\alpha-, \beta- and \delta \gamma-cyclodextrins $on human erythrocytes. Eur. J. Biochem. 186: 17-22.   DOI
10 Ooya, T., K. M. Huh, M. Saitoh, E. Tamiya, and K. Park. 2005. Self-assembly of cholesterol-hydrotropic dendrimer conjugates into micelle-like structure: Preparation and hydrotropic solubilization of paclitaxel. Sci. Technol. Adv. Mat. 6: 452-456.   DOI   ScienceOn
11 Pocker, Y. and D. R. Storm. 1968. The catalytic versatility of erythrocyte carbonic anhydrase. IV. Kinetic studies of enzymecatalyzed hydrolyses of p-nitrophenyl esters. Biochemistry 7: 1202-1214.   DOI   ScienceOn
12 Pocker, Y. and L. J. Guilbelt. 1972. Catalytic versatility of erythrocyte carbonic anhydrase. Kinetic studies of the enzymecatalyzed hydrolysis of methylpyridyl carbonates. Biochemistry 11: 180-190.   DOI   ScienceOn
13 Gerlsma, S. Y. 1968. Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. J. Biol. Chem. 243: 957-961.
14 Roelants, G. E. and J. W. Goodman. 1968. Immunochemical studies on the $poly-\gamma-D-glutamyl $capsule of Bacillus anthracis. IV. The association with peritoneal exudate cell ribonucleic acid of the polypeptide in immunogenic and nonimmunogenic forms. Biochemistry 7: 1432-1440.   DOI
15 Rozema, D. and S. H. Gellman. 1995. Artificial chaperones: Protein refolding via sequential use of detergent and cyclodextrin. J. Am. Chem. Soc. 117: 2373-2374.   DOI   ScienceOn
16 Dutta, P., S. Shrivastava, and J. Dey. 2009. Amphiphilic polymer nanoparticles: Characterization and assessment as new drug carriers. Macromol. Biosci. 9: 1116-1126.   DOI   ScienceOn
17 Hou, A. and Y. Shi. 2009. Polymerization and surface active properties of water-soluble amphiphilic polysiloxane copolymers modified with quaternary ammonium salts and long-carbon chain groups. Mater. Sci. Eng. B 163: 99-104.   DOI   ScienceOn
18 Ishi-i, T., R. Iguchi, E. Snip, M. Ikeda, and S. Shinkai. 2001. Fullerene can reinforce the organogel structure of porphyrinappended cholesterol derivatives: Novel odd-even effect of the $(CH_{2)n}$ spacer on the organogel stability. Langmuir 17: 5825-5833.   DOI   ScienceOn
19 Kim, M. S., K. S. Seo, G. Khang, and H. B. Lee. 2005. Preparation of a gradient biotinylated polyethylene surface to bind streptavidin-FITC. Bioconjugate Chem. 16: 245-249.   DOI   ScienceOn
20 Kim, T. W., T. Y. Lee, H. C. Bae, J. H. Hahm, Y. H. Kim, C. Park, et al. 2007. Oral administration of high molecular mass $poly-\gamma-glutamate $ induces NK cell-mediated antitumor immunity. J. Immun. 179: 775-780.   DOI
21 Cavalieri, F., E. Chiessi, and G. Paradossi. 2007. Chaperone-like activity of nanoparticles of hydrophobized poly(vinyl alcohol). Soft Mater. 3: 718-724   DOI   ScienceOn
22 Lee, E.-H., H. Uyama, O. H. Kwon, and M. H. Sung. 2009. Fabrication of ultrafine fibers of poly($\gamma-glutamic acid$) and its derivative by electrospinning. Polym. Bull. 63: 735-742.   DOI   ScienceOn
23 Lee, E.-H., Y. Kamigaito, T. Tsujimoto, H. Uyama, S. Seki, S. Tagawa, and M. H. Sung. 2010. Preparation of poly($\gamma-glutamic acid$) hydrogel/apatite composites and their application for scaffold of cell proliferation. J. Soc. Fiber Sci. Technol. Jap. 66: 104-111.
24 Lee, T. Y., Y. H. Kim, S. W. Yoon, J. C. Choi, J. M. Yang, C. J. Kim, J. T. Schiller, M. H. Sung, and H. Poo. 2009. Oral administration of poly-gamma-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol. Immunother. 58: 1781-1794.   DOI   ScienceOn
25 Akiyoshi, K., Y. Sasaki, and J. Sunamoto. 1999. Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: Thermal stabilization with refolding of carbonic anhydrase B. Bioconjugate Chem. 10: 321-324.   DOI   ScienceOn
26 Astafieva, I., X. F. Zhong, and A. Eisenberg. 1993. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26: 7339-7352.   DOI   ScienceOn
27 Clark, E. D. B. 1998. Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9: 157-163.   DOI   ScienceOn
28 Cleland, J. L., C. Hedgepeth, and D. I. C. Wang. 1992. Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. J. Biol. Chem. 267: 13327-13334.