• Title/Summary/Keyword: Poly(dimethyl siloxane)

Search Result 38, Processing Time 0.029 seconds

Synthesis of Silicone Surfactant for Antifoamer (저기포성 실리콘 계면활성제의 합성)

  • Jeong, Noh-Hee;Son, Hyun-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • The hydrosilylation is an addition reaction of Si-H bond to unsaturated double bonds, which provides a convenient mechanism to synthesize poly(dimethylsiloxane-co-methylsiloxane)copolymer having siloxy units in polymer backbone. In this study, Poly(dimethylsiloxane-co-methylsiloxane) copolymer was synthesized through the polymerization reaction of cyclopentasiloxane with poly(methyl-hydrogen) siloxane. Silicone-hydrogen functional group of the poly(dimethylsiloxane-co-methylsiloxane) copolymer was substituted to the alkyl groups by hydrosilylation. And their structure was analyzed with FT-IR, H-NMR and GPC instruments, respectively. Surface tension of the synthetic compounds is increased from 22dyne/cm to 25dyne/cm according to increase additional EO moles. The cmc which was evaluated by surface tension was ranged $10^{-5}$ to $10^{-4}mol/L$ and it was decreased according to increase of dimethyl siloxyl content. HLB number of these surfactants was evaluated 9.5 to 11.5 range. These silicone surfactants is applied to self-emulsifier defoamer and personal care products as surface tension depressant, emulsifier, foam control agent.

Preparation and Characterization of New Immunoprotecting Membrane Coated with Amphiphilic Multiblock Copolymer

  • Kang, Han-Chang;Bae, You-Han
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • New immunoprotecting membranes were prepared by spin coating the amphiphilic random multiblock copolymers of poly(ethylene glycol) (PEG) and poly(tetramethylene ether glycol) (PTMEG) or poly(dimethyl siloxane) (PDMS) on porous Durapore(R) membrane. The copolymer coating was intended to make a biocompatible, immunoprotecting diffusional barrier and the supporting porous substrate was for mechanical stability and processability. By filling Durapore(R) membrane pores with water, the penetration of coating solution into the pores was minimized during the spin coating process. A single coating process produced a completely covered thin surface layer (~1 ${\mu}{\textrm}{m}$ in thickness) on the porous substrate membrane. The permselectivity of the coated layer was influenced by PEG block length, polymer composition, and thickness of the coating layer. A composite membrane with the coating layer prepared with PEG 2 K/PTMEG 2 K block copolymer showed that its molecular weight cut-of fat any 40 based on dextran was close to the molecular size of IgG (Mw = 150 kDa). However, IgG permeation was detected from protein permeation test, while glucose oxidase (Mw = 186 kDa) was not permeable through the coated membrane.

PDMS Surface Modification with HDMA Grafting Using Ozone for Prolonging Hydrophilicity Lifetime (장기간 친수성 유지를 위해 오존을 이용하여 HEMA 처리한 PDMS의 표면 개질)

  • Kim, Sang-Cheol;Jang, Byeong-Hyeon;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2096-2098
    • /
    • 2004
  • 본 논문은 마이크로 유체 소자의 소재로서 많이 쓰이고 있는 poly(dimethyl-siloxane) (PDMS)의 친수성 유지를 위한 표면 개질에 대한 연구이다. PDMS는 유연성, 투명성 등의 다양한 장점을 가지고 있으나, 높은 소수성으로 인하여 유체 소자로의 응용에 제한을 갖는다. 기존 연구에서 수행한 산소 플라즈마 후 2-Hydroxyethyl methacrylate (HEMA) 처리에 의한 PDMS의 표면 개질은 친수성 유지 시간에 한계가 있었다. 이에 친수성 유지 시간을 증가시키기 위하여 경화된 PDMS에 두 시간의 오존 처리 후, 6시간 동안 monomethyl ether hydroquinone (MEHQ)가 제거된 HEMA로 표면을 개질한다. 표면 처리된 PDMS의 친수성 특성을 확인하기 위해 접촉각을 측정하였다. 측정 결과, 오존을 이용하였을 때 $60^{\circ}$ 이하의 낮은 접촉각이 900시간 이상 유지됨을 확인하였다.

  • PDF

Synthesis and Characterization of Nanocomposite Films Consisting of Vanadium Oxide and Microphase-separated Graft Copolymer

  • Choi, Jin-Kyu;Kim, Yong-Woo;Koh, Joo-Hwan;Kim, Jong-Hak;Mayes, Anne M.
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2007
  • Nanocomposite films were prepared by sol-gel synthesis from vanadium triisopropoxide with $poly((oxyethylene)_9$ methacrylate)-graft-poly(dimethyl siloxane), POEM-g-PDMS, producing in situ growth of vanadium oxide within the continuous ion-conducting POEM domains of micro phase-separated graft copolymer. The formation of vanadium oxide was confirmed by wide angle x-ray scattering (WAXS) and Fourier transform infrared (FT-IR) spectroscopy. Small angle x-ray scattering (SAXS) revealed the spatially-selective incorporation of vanadium oxide in the POEM domains. Upon the incorporation of vanadium oxide, the domain periodicity of the graft copolymer monotonously increased from 17.2 to 21.0 nm at a vanadium content 14 v%, above which it remained almost invariant. The selective interaction of vanadium oxide with POEM was further verified by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The nanocomposite films exhibited excellent mechanical properties $(l0^{-5}-10^{-7}dyne/cm^2)$, mostly due to the confinement of vanadium oxide in the POEM chains as well as the interfaces created by the microphase separation of the graft copolymer.

Synthesis and Characterization of Amphiphilic Polyurethanes as Coating Materials for Urinary Catheters (요도용 카테타 도포용 양친성 폴리우레탄의 합성 및 분석)

  • Park Jae-Hyung;Kim Kwang-Meyung;Chung Hes-Son;Kwon Ick-Chan;Bae You-Han;Jeong Seo-Young
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.247-252
    • /
    • 2006
  • The long-term use of indwelling urinary catheters can allow bacterial adhesion to their surfaces, followed by the catheter-associated urinary tract infection. In an attempt to minimize the bacterial adhesion, various amphiphilic polyurethanes (APUs) were synthesized as potential coating materials for urinary catheters. By varying composition of the soft segments such as PEO, PTMO, and PDMS, four different polyurethanes were synthesized. All the APU-coated urinary catheters had the smooth surfaces and showed higher hydrophilicity, compared to the commercial silicone catheters. In particular, the use of APUs with the higher PEG content significantly augmented hydrophilicity and remarkably reduced the total amount of bacteria adhering to the surface. Overall, the APUs prepared in this study provided the promising potential as coating materials for urinary catheters.

Evaluation of Gas Transport Parameters through Dense Polymeric Membranes by Continuous-Flow Technique (연속흐름방식에 의한 기체투과특성 측정 및 분석)

  • 염충균;이정민;홍영택;김성철
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.141-150
    • /
    • 1999
  • A novel permeation apparatus was developed which could make the on-line measurements of both flux transient and permeate composition in gas permeation. The measurement by using the per¬meation apparatus was based on the continuous-flow technique. The transient measurement allowed the simultaneous determinations of permeation characteristics, such as, permeability, diffusion and solubility coefficients, and activation energies only with one experiment. The apparatus performance was illustrated by conducting the permeation of pure gases through two glassy polyimides and a rubbery poly (dimethyl¬siloxane) membranes, respectively. A comparison of the permeation characteristics determined from the flux transients was made with the literature values for verifying the confidence and accuracy of the measurement. Also, the analysis of the permeation transients obtained was carried out for the close investigation of the permeation behaviors of gases through membrane.

  • PDF

In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing

  • Ryu, Donghyeon;Loh, Kenneth J.;Ireland, Robert;Karimzada, Mohammad;Yaghmaie, Frank;Gusman, Andrea M.
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.471-486
    • /
    • 2011
  • Various types of strain sensors have been developed and widely used in the field for monitoring the mechanical deformation of structures. However, conventional strain sensors are not suited for measuring large strains associated with impact damage and local crack propagation. In addition, strain sensors are resistive-type transducers, which mean that the sensors require an external electrical or power source. In this study, a gold nanoparticle (GNP)-based polymer composite is proposed for large strain sensing. Fabrication of the composites relies on a novel and simple in situ GNP reduction technique that is performed directly within the elastomeric poly(dimethyl siloxane) (PDMS) matrix. First, the reducing and stabilizing capacities of PDMS constituents and mixtures are evaluated via visual observation, ultraviolet-visible (UV-Vis) spectroscopy, and transmission electron microscopy. The large strain sensing capacity of the GNP-PDMS thin film is then validated by correlating changes in thin film optical properties (e.g., maximum UV-Vis light absorption) with applied tensile strains. Also, the composite's strain sensing performance (e.g., sensitivity and sensing range) is also characterized with respect to gold chloride concentrations within the PDMS mixture.

A study on forming a spacer for wafer-level CIS(CMOS Image Sensor) assembly (CMOS 이미지 센서의 웨이퍼 레벨 어셈블리를 위한 스페이스 형성에 관한 연구)

  • Kim, Il-Hwan;Na, Kyoung-Hwan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.13-20
    • /
    • 2008
  • This paper describes the methods of spacer-fabrication for wafer-level CIS(CMOS Image Sensor) assembly. We propose three methods using SU-8, PDMS and Si-interposer for the spacer-fabrication. For SU-8 spacer, novel wafer rotating system is developed and for PDMS(poly-dimethyl siloxane) spacer, new fabrication-method is used to bond with alignment of glass/PDMS/glass structure. And for Si-interposer, DFR(Dry Film Resist) is used as adhesive layer. The spacer using Si-interposer has the strongest bonding strength and the strength is 32.3MPa with shear.

Soft Mold Deformation of Large-area UV Impring Process (대면적 UV 임프린팅 공정에서 유연 몰드의 변형)

  • Kim, Nam-Woong;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.53-59
    • /
    • 2011
  • Recently there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we focused on the deformation of the $2^{nd}$ generation TFT-LCD sized ($370{\times}470mm^2$) large-area soft mold in the UV imprinting process. A mold was fabricated with PDMS(Poly-dimethyl Siloxane) layered glass back plate(t0.5). Besides, the mold includes large surrounding wall type protrusions of 1.9 mm width and the via-hole(7 ${\mu}m$ diameter) patterend area. The large surrounding wall type protrusions cause the proximity effect which severely degrades the uniformity of residual layer in the via-hole patterend area. Therefore the deformation of the mold was calculated by finite element analysis to assess the effect of large surrounding wall type protrusions and the flexiblity of the mold. The deformation of soft mold was verified by the measurements qualitatively.

DNA Separation Using Cellulose Derivatives and PEO by PDMS Microchip

  • Kang, Chung-mu;Back, Seung-Kwon;Song, In-gul;Choi, Byung-ok;Chang, Jun-keun;Cho, Keun-chang;Kim, Yong-seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.519-523
    • /
    • 2006
  • Poly(dimethyl siloxane) (PDMS) has been employed as a microchip material for DNA separation in microfluidic condition. Different sieving molecules such as cellulose derivatives having glucose building block (methyl cellulose (MC), hydroxyethyl cellulose (HEC), and hydroxypropyl methyl cellulose (HPMC)) and polyethylene oxide (PEO) having linear (ring-opened ethylene oxide) unit were used and their performance was compared in terms of separation efficiency and resolution. In general, PEO showed better separation performance than cellulose derivatives probably due to the nature of linear shape polymer conformation. It was possible to perform at least 15 consecutive running with 1.2% PEO at the electric field strength around 200 V/cm. Fast analysis of the standard $\Phi$X 174 RF DNA/Hae III (less than 130s) was obtained with the number of the theoretical plate around 250,000/m. Our PMDS microchip was applied to the measurement of CAG repeat number, which is related to male infertile disease.