• Title/Summary/Keyword: Poisson process.

Search Result 484, Processing Time 0.026 seconds

Behavior of Orthotropic Composite Plate Due to Random Poisson's Ratio (직교이방성 복합적층구조의 거동: 포아송비의 임의성에 의한 영향)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.627-637
    • /
    • 2009
  • Composite materials have been employed in the various engineering applications due to high mechanical performances including high strength-weight ratio and high degree of free formability. Due to complex manufacturing process, however, it can have intrinsic randomness in the material constants which affect the deterministic behavior of the composite structures. In this study, we suggest a formulation for stochastic finite element analysis considering the spatial randomness of Poisson's ratio. Considering the reciprocal relation between elastic moduli and Poisson's ratios in the two mutually orthogonal axes, one of two values of Poisson's ratio can be expressed in terms of the other. Using this, the relation between stress resultants and strains is derived in the ascending order of power of the stochastic field function, which can be directly used in the formulation to obtain the coefficient of variation of responses. The adequacy of the proposed scheme is demonstrated by comparison with the results of Monte Carlo analysis.

A Life-Process Analysis of Broaching Tool (브로칭 공구의 수명 분석)

  • Lee, Sang-Cheon;Kang, Shin-Ick;Hong, Jung-Wan
    • IE interfaces
    • /
    • v.15 no.1
    • /
    • pp.64-72
    • /
    • 2002
  • Broaching machine is widely used for machining inner shaped slots in the work-pieces, and provides vertical motion (usually hydraulically powered) between tool and work-piece. In this study, we modelled the tool life process and investigated economic tool life of broaching machine. Tool life process is divided into wear-process and succeeding failure process. Wear process is defined as machining wear and failure process as 'chipping' occurred by random shock. We modelled wear process as linear regression function for products amounts and assumed failure process as Poisson process. Economic tool life is defined as the number of lots which minimizes average tool related cost per lot and analyzed by using age replacement policy technique. As tool-related cost factors, we consider tool replacement cost, tool maintenance cost and quality costs of products. The results of this study can be applied to analyze life process of general machining tools.

Stochastic ship roll motion via path integral method

  • Cottone, G.;Paola, M. Di;Ibrahim, R.;Pirrotta, A.;Santoro, R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.119-126
    • /
    • 2010
  • The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied for ship roll dynamics under random impulsive white noise excitation.

Cost-Reliability Optimal Policies Based on Musa-Okumoto Logarithmic Poisson Execution Time Model (Musa-Okumoto 대수 포아송 실행시간 모형에 근거한 비용-신뢰성 최적정책)

  • 김대경
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.141-149
    • /
    • 1998
  • It is of great practical interest to decide when to stop testing a software system in the development phase and transfer it to the user. This decision problemcalled an optimal software release one is discussed to specify the a, pp.opriate release time. In almost all studies, the software reliability models used are nonphomogenous Poisson process(NHPP) model with bounded mean value function. HNPP models with unbounded mean value function are more suitable in practice because of the possibility of introducing new faults when correcting or modifying the software. We discuss optimal software release policies which minimize a total average software cost under the constraint of satisfying a software reliability requirement. A numerical example illustrates the results.

  • PDF

Optimization of a Model for an Inventory with Poisson Restocking - Optimization of an Inventory Model -

  • Lee, Eui-Yong;Han, Sang-Il;Kim, Honggie
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.1
    • /
    • pp.214-218
    • /
    • 1994
  • An inventory supplies stock continuously at a constant rate. A deliveryman arrives according to a Poisson process. If the level of the inventory, when he arrives, exceeds a threshold, no action is taken, otherwise a delivery is made by a random amount. Costs are assigned to each visit of the deliveryman, to each delivery, to the inventory being empty and to the stock being kept. It is shown that there exists a unique arrival rate of the deliveryman which minimizes the average cost per unit time over an infinite horizon.

  • PDF

MULTIDIMENSIONAL SYMMETRIC STABLE PROCESSES

  • Chen, Zhen-Qing
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.329-368
    • /
    • 1999
  • This paper surveys recent remarkable progress in the study of potential theory for symmetric stable processes. It also contains new results on the two-sided estimates for Green functions Poisson kernels and Martin kernels of discontinuous symmetric $alpha$ -stable process in bounded $C^{1,1}$ open sets. The new results give ex-plicit information on how the comparing constants depend on pa-rametrer $alpha$ and consequently recover the green function and Poisson kernel estimates for Brownian motion by passing $alpha{\uparrow}2$. In addition to these new estimates this paper surveys recent progress in the study of notions of harmonicity integral representation of harmonic func-tions boundary harnack inequality conditional gauge and intrinsic ultracontractivity for symmetric stable processes. Here is a table of contents.

Order Based Performance Evaluation of a CONWIP System with Compound Poisson Demands (복합포아송 수요를 갖는 CONWIP 시스템의 주문관점에서의 성능평가)

  • Park, Chan-Woo;Lee, Hyo-Seong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.137-146
    • /
    • 2007
  • In this study we consider a CONWIP system studied in Park and Lee [1] in which the processing times at each station follow a Coxian distribution and the demands for the finished products arrive according to a compound Poisson process. The demands that are not satisfied Immediately are either backordered or lost according to the number of demands that exist at their arrival instants. For this system using the results in [1] we develop an approximation method to calculate order based performance measures such as the mean time of fulfilling a customer order and the mean number of customer orders. To test the accuracy of the approximation method, the results obtained from the approximation method are compared with those obtained by simulation. Comparisons with simulation have shown that the approximate method provides fairly good results.

Shape and Appearance Repair for Incomplete Point Surfaces (결함이 있는 점집합 곡면의 형상 및 외관 수정)

  • Park, Se-Youn;Guo, Xiaohu;Shin, Ha-Yong;Qin, Hong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.330-343
    • /
    • 2007
  • In this paper, we present a new surface content completion system that can effectively repair both shape and appearance from scanned, incomplete point set inputs. First, geometric holes can be robustly identified from noisy and defective data sets without the need for any normal or orientation information. The geometry and texture information of the holes can then be determined either automatically from the models' context, or manually from users' selection. After identifying the patch that most resembles each hole region, the geometry and texture information can be completed by warping the candidate region and gluing it onto the hole area. The displacement vector field for the exact alignment process is computed by solving a Poisson equation with boundary conditions. Out experiments show that the unified framework, founded upon the techniques of deformable models and PDE modeling, can provide a robust and elegant solution for content completion of defective, complex point surfaces.