• Title/Summary/Keyword: Platycodon Grandiflorum

Search Result 305, Processing Time 0.033 seconds

Apoptotic Cell Death of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum (길경이 인체 폐암세포에 미치는 영향에 대한 실험적 연구)

  • Lee Sung Yeoul;Kim Won Ill;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1019-1030
    • /
    • 2003
  • Platycodi Radix, the root of Platycodon grandiflorum, commonly known as Doraji, is used as a traditional oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health benefits. In the present study, we investigated the effects of an aqueous extract from the roots of P. grandiflorum (AEPG) on the growth of human lung carcinoma A549 cells. Results obtained are as fellow; AEPG treatment resulted in the inhibition of the cell viability of A549 cells in a concentration-dependent manner. Upon treatment with AEPG, A549 cells developed many of the hallmark features of apoptosis, including condensation of chromatin. Flow cytometry analysis confirmed that AEPG increased populations of apoptotic-sub G1 phase. Western blot and RT-PCR analyses indicated that the expressions of Bcl-2 was down-regulated but Bax was up-regulated in AEPG-treated A549 cells. AEPG-induced apoptotis of A549 cells was associated with rroteolytic cleavage and activation of caspase-3, release of cytochrome c from mitochondria into cytosol and down-regulation of Akt and phospho-Akt proteins in a dose-dependent manner. Induction of apoptosis by AEPG treatment was associated with inhibition and/or degradation of apoptotic target proteins such as poly(ADP-ribose) polymerase, β-catenin and phospholipase C-γ 1. AEPG treatment inhibited the levels of cyclooxygenases protein of A549 cells, which was associated with the inhibition of prostaglandin E2 accumulation in a concentration-dependent fashion. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention against human lung cancer.

Effects of Medium Compositions and Plant Growth Regulators on in vitro Organogenesis in Cultured Explants of Platycodon grandiflorum Species

  • Kwon, Soo Jeong;Roy, Swapan Kumar;Kim, Hye-Rim;Moon, Young-Ja;Yoon, Ki-Hong;Woo, Sun Hee;Boo, Hee Ock;Koo, Jin-Woog;Kim, Hag Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.259-274
    • /
    • 2017
  • Platycodon grandiflorum (Bell flower) is an important plant that has traditionally been used as herbal medicine for the treatment of cough, phlegm, sore throats, lung abscesses, chest pains, dysuria, and dysentery. The present study was initiated to investigate the feasibility of inducing shoot and root organogenesis in cultured explants of P. grandiflorum in a range of culture media and through use of various plant growth regulators (PGRs). The plantlets (Stem containing one node) were isolated and cultured on different concentrations of Murashige and Skoog (MS) medium supplemented with PGRs. We found that proliferation and elongation of shoots and roots could be achieved on 1/4 MS for P. grandiflorum with wild and green petals and on 1/8 MS for P. grandiflorum with double petals. The highest levels of development and elongation of adventitious shoots and roots were observed when petal explants were cultured on 1/4 MS (pH 3.8) supplemented with 5% sucrose. Increasing the agar concentration reduced shoot growth and rooting potential; nevertheless, the highest number of shoots and roots was observed on 0.6% agar. In the case of growth regulators, 1/4 MS supplemented with $1mg\;L^{-1}$ 6-benzylaminopurine (BA) was found to be best for shooting, although higher concentrations of BA tended to reduce shoot and root elongation. The highest number of shoots was achieved on $0.5mg{\cdot}L^{-1}$ thidiazuron (TDZ) from double petal explants grown on 1/8 MS. However, root and shoot elongation were found to decrease when TDZ concentrations were increased. Low concentrations of kinetin, naphthalene acetic acid, indole acetic acid, and 3-indole butyric acid induced shoot and root proliferation and elongation. Taken together, our study showed that low concentrations of PGRs induced the greatest root formation and elongation, showing that the optimal concentration of PGRs for shoot proliferation was species-dependent.

Chemical Composition and Antioxidative Activities of Platycodon grandiflorum Leaves and Stems (도라지 잎과 줄기의 화학성분 및 항산화활성)

  • Jeong, Chang-Ho;Shim, Ki-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.511-515
    • /
    • 2006
  • The chemical composition and antioxidative activities of Platycodon grandiflorum leaves and stems was investigated in order to evaluate the potential as functional food material. The moisture contents of leaves and stems were 84.31% and 75.91%, respectively. The Ca content was the highest in leaves (351.49 mg%) and stems (217.56 mg%). The major free sugar of leaves was glucose (1,729.87 mg%) However major free sugar of stems was fructose (734.91 mg%). Glutamic acid (242.91 mg%) and arginine (228.60 mg%) in leaves were major amino acids, lysine (110.08 mg%) and glutamic acid (80.40 mg%) in stems were major amino acids. Oleic acid and linoleic acid were major fatty acids in crude fat of both leaves and stems. DPPH free radical scavenging activities of fractions from leaves and stems were rising with increasing amount of fractions. Like antioxidant activity, the reducing power of fractions from leaves and stems was also dependent on concentration while butanol fraction of stems showed the highest reducing power.

Enhancing the Immunogenicity of Platycodon Grandiflorum on Adaptive Immune System (길경(桔經)의 적응면역계(適應免疫界) 증강(增强) 효과(效果))

  • Park, Joon-Hong;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Khung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Purpose: This study was designed to investigate enhancing the immunogenicity effects of Platycodon grandiflorum(PG) on adaptive immune system. Methods: To investigate the effect of PG as an adjuvant, we used the ovalbumin (OVA) as an antigen at first. The proliferation of lymphocytes, the antibody titer, the subisotypes of antibodies and the production of cytokines were measured. Results: The proliferation of lymphocytes and the antibody titer were increased after PG treatment. The increased subisotypes of antibodies were IgG2 and IgG3 induced from T1-helper cells. However IgE induced from T2-helper cells was decreased. The production of cytokines derived from T1-helper cells was increased but that from T2-helper cells was decreased. Conclusion: It is supposed that PG has an immunogenicity effect as an adjuvant on adaptive immune system.

Proteome characterization of hormone-induced diploid and tetraploid roots of Platycodon grandiflorum

  • Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Song, Beom-Heon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.132-132
    • /
    • 2017
  • Plants, including Platycodon grandiflorum have been used globally across varied cultures as a safe natural source of medicines. From time immemorial, humans have relied on plants that could meet their basic necessities such as food, shelter, fuel and health. This study was executed to profile proteins from the hormone induced diploid and tetraploid roots using high throughput proteome approach. Two dimensional gels stained with CBB, a total of 64 differential expressed proteins were identified from the diploid root using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 20 differential expressed protein spots ( ${\geq}1.5-fold$) were analyzed using LTQ-FTICR MS whereas a total of 13 protein spots were up regulated and 7 protein spots were down-regulated. However, in the case of tetraploid root, a total of 78 differential expressed proteins were identified from tetraploid root of which a total of 28 differential expressed protein spots (${\geq}1.5-fold$) were analyzed by mass spectrometry whereas a total of 16 protein spots were up regulated and a total of 12 protein spots were down-regulated. However, proteins identified using iProClass databases revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase activity, transporter activity and isomers activity. The exclusive protein profile may provide insight clues for better understanding the characteristics of protein function and its metabolic activity that can help for the development of the nutritional and breeding aspects of this economically important medicinal plant.

  • PDF

Improvement of blood glucose control in type 2 diabetic db/db mice using Platycodon grandiflorum seed extract (도라지 종자 추출물의 처리가 제2형 당뇨 db/db 마우스의 혈당개선에 미치는 효과)

  • Kim, Tae Yeong;Kim, Seok Joong;Imm, Jee-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • The biological activities of Platycodon grandiflorum (PG) root extracts have been studied intensively, whereas there are limited number of studies on PG seed extract (PGSE). PGSE was prepared by ethanol extraction, and its antidiabetic effect was evaluated in mice with type 2 diabetes (C57BLKS/J-db/db). Results indicated that the administration of high-dose PGSE (600 mg/kg, wb) significantly stabilized the blood glucose levels, as evidenced by the results of the oral glucose tolerance test. Mice treated with high-dose PGSE exhibited significantly lower serum hemoglobin A1c, insulin, and leptin levels after eight weeks of feeding trial (p<0.05). High-dose PGSE administration significantly improved glucose uptake in the femoral muscle of db/db mice by activating both IRS-1/PI3K/AKT/AS160 and AMPK phosphorylation pathways. GLUT4 translocation from the cytosol to the plasma membrane increased 1.7-fold in the PGSE high-dose group. These results suggest that PGSE has potential for development as an antidiabetic agent.

Anti-Inflammatory Effects of Streamed Platycodon grandiflorum against UVB Radiation-Induced Oxidative Stress in Human Primary Dermal Fibroblast

  • Lee, Ji Yeon;Park, Jeong-Yong;Lee, Dae Young;Kim, Hyung Don;Kim, Geum-Soog;Lee, Seung Eun;Seo, Kyung Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.4
    • /
    • pp.495-501
    • /
    • 2018
  • Ultraviolet B (UVB) exposure is a risk factor for skin damage resulting in oxidative stress, inflammation, and cell death. The purpose of this study was to investigate the physicochemical properties of Platycodon grandiflorum (PG) to improve its biological activities using a three-step steaming process. We investigated the protective effects of PG and steamed PG extracts on human dermal fibroblasts (HDFs) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the PG extracts was evaluated by measuring the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) scavenging activity. ABTS and DPPH were shown by the 0, 30, and 70% ethanol extracts of 2S-PG and 3S-PG ($IC_{50}$, 28~45 and $27{\sim}30{\mu}g/mL$, respectively). Treatment of UVB-irradiated cells with steamed PG ($25{\sim}400{\mu}g/mL$) did not affect their viability. The streamed PG extract suppressed UVB-induced generation of reactive oxygen species (ROS). In addition, streamed PG extract reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in UVB-irradiated HDF, regulating nuclear factor $(NF)-{\kappa}B$ expression. These findings suggest that steamed PG extract may be potentially effective against inflammation associated with UVB-induced oxidation stress.

The Effect of the Membrane Fluidity of Bellflower(Platycodon grandiflorum A.) Fractions on Liposomal Phospholipid Membranes (도라지 분획성분이 인지질막 Liposome의 유동성에 미치는 영향)

  • 배송자;강보영
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2002
  • The object of this study was to investigate the effect of membrane fluidity of bellflower(Platycodon grandiflorum A. DC, ; PG) fractions in phosphatidylcholine(PC) liposomes, measured with high-sensitivity differential scanning calorimetry(DSC). We used dipalmitoylphosphatidylcholine(DPPC) bilayers which slake most stable liposomes among the other phosphatidylcholine. The sample PG was extracted and fractionated to five different types : butanol(PGMB), ethylacetate(PGMEA), ethylether(PGMEE), hexane (PGMH) and methanol(PGMM). Among five different solvent fractions, the PGMEE, PGMEA, PGMH and PGMM fractions markedly affected the thermotropic properties of DPPC liposomes, broadened and shifted the thermograms, and reduced the cooperative unit. It might be said that the incorporation of PGMEE, PGMEA and PGMH in DPPC liposomes were located in the hydrophobic core of DPPC bilayers and, PGMM and PGMB in the hydrophilic core of DPPC bilayers. These results suggest that certain substances in the PGMEE, PGMEA and PGMH fractions might have biologically significant effect on the membrane fluidity.